Small Computer System Interface - Part 1

forensic-proof.com proneer

Outline

- 1. SCSI Basics (geeks.com, tech-tips)
 - ✓ The Basics
 - ✓ Performance
 - ✓ Price
 - ✓ Reliability
- 2. More than an interface SCSI vs. ATA (March 2003)
 - ✓ Introduction
 - ✓ Technology Differences
 - ✓ Performance Differences
 - ✓ Conclusions

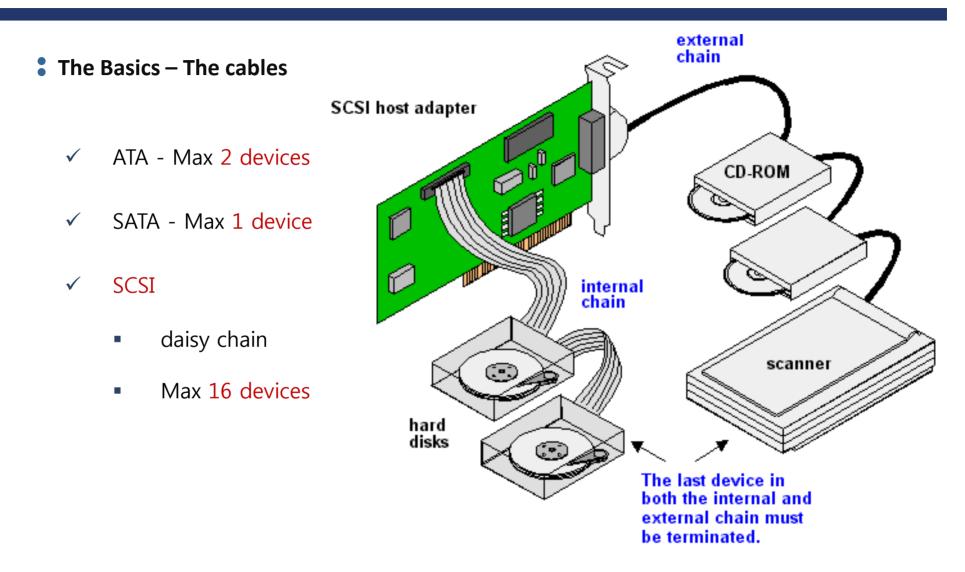
COMPUTER GEEKS (geeks.com), tech-tips HARDWARE

The Basics

✓ Small Computer System Interface(SCSI), ATA → first introduced in 1986

✓ "skuzzy"

✓ "host adaptor"(adaptor card), connecting SCSI drives to the motherboard


The Basics – On board vs. Adaptor card

On board SATA Connector

SCSI Adaptor card

- ✓ On board 40-pin ATA connector & 7-pin SATA connector
- ✓ PCI or PCI-X slots, SCSI 25, 50, 68, 80-pin
- ✓ SCSI drives can communicate directly, requiring almost no CPU support

• The Basics – The cables

 Select SCSI Disk and 	1 press <enter></enter>	
SCSI ID #0:	Neideutee	
	No device	
SCSI ID #1:	No device	
SCSI ID #2:	No device	
SCSI ID #3:	IBM DCAS-34330W	
SCSI ID #4:	No device	
SCSI ID #5:	No device	
SCSI ID #6:	ARCHIVE Python 28849-XXX	
SCSI ID #7:	AHA-2940 Ultra/Ultra W	
SCSI ID #8:	No device	
SCSI ID #9:	No device	
SCSI ID #10:	No device	
SCSI ID #11:	No device	
SCSI ID #12:	No device	
SCSI ID #13:	No device	
SCSI ID #14:	No device	
SCS1 ID #15:	No device	
3031 10 #13	NO UBOICE	

- The Basics Performance
 - \checkmark SCSI 1 5 MBps | 8 bit wide (5 MHz)
 - 8 devices per 1 controller channel

- ✓ Ultra320 SCSI 320 MBps | 16 bit wide (40 MHz)
 - 16 devices per 1 controller channel

Serial SCSI (SAS de 300Mo/s ‡)
SCSI Ultra-5 (640 Mo/s)
SCSI Ultra-4 (320 Mo/s)
SCSI Ultra-3 (160 Mo/s)
Serial ATA (150 Mo/s)
ATA-7 (133 Mo/s)
ATA-6 (100 Mo/s)
Firewire IEEE-1394b (100 Mo/s)
SCSI Ultra-2 Wide (80 Mo/s)
ATA-5 (66,6 Mo/s)
USB-2 (60 Mo/s)
Firewire IEEE-1394a (50 Mo/s)
SCSI Ultra-2 et Ultra Wide (40 Mo/s)
ATA-4 (33 Mo/s)
SCSI Ultra et Wide (20 Mo/s)
USB-1 (12 Mo/s)
- SCSI 1 (10 Mo/s)

The Basics – Performance SCSI vs. ATA

	Transfer speed (MB/s)	Max. cable length (m)	maximum connecting devices
SCSI 1	5	-	8
Ultra 320 SCSI	320	12	15 (plus the HBA; Host Bus Adaptor)
PATA-133	133	0.46	2
SATA-150 (SATA I)	150	1	1
SATA-300 (SATA II)	300	1	1

The Basics – Prices

	Disk size (GB)	RPMs	Prices (WON)
Ultra 320 SCSI	146	15,000	326,100
	300	10,000	630,000
SAS	300	15,000	514,000
EIDE(ATA-133)	320	7,200	74,000
SATA2(SATA-300)	SATA2(SATA-300) 320		54,700

The Basics – Reliability

- ✓ One of the key reason for SCSI's higher price is reliability
- ✓ SCSI drives are built to a much higher standard than typical ATA or SATA drives
- ✓ Mean Time Between Failure(MTBF)
 - 1.5 million hour on SCSI
 - 1 million hour on SATA or less
- ✓ Operation Uptime
 - SCSI 24/7
 - ATA or SATA 8 hours per day

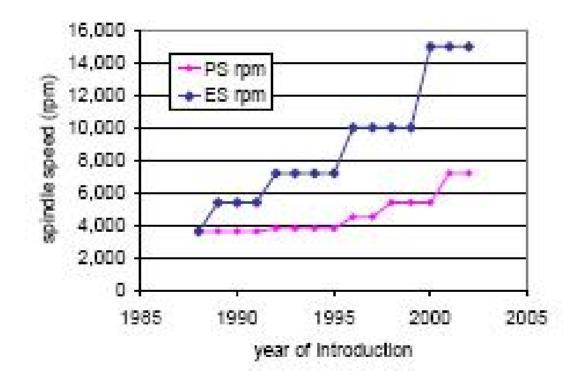
More than an interface – SCSI vs. ATA

2nd Annual Conference on File and Storage Technology (FAST), 2003

Introduction

Categorize

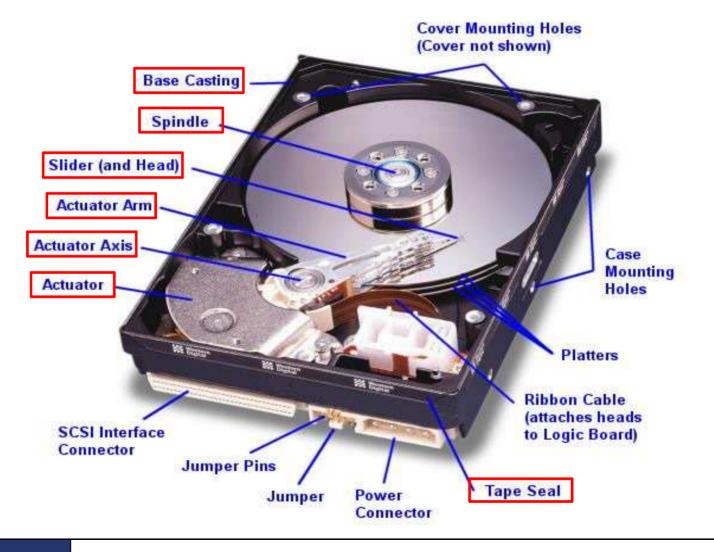
✓ Personal Storage


personal computer market uses to the first low-cost hard discs

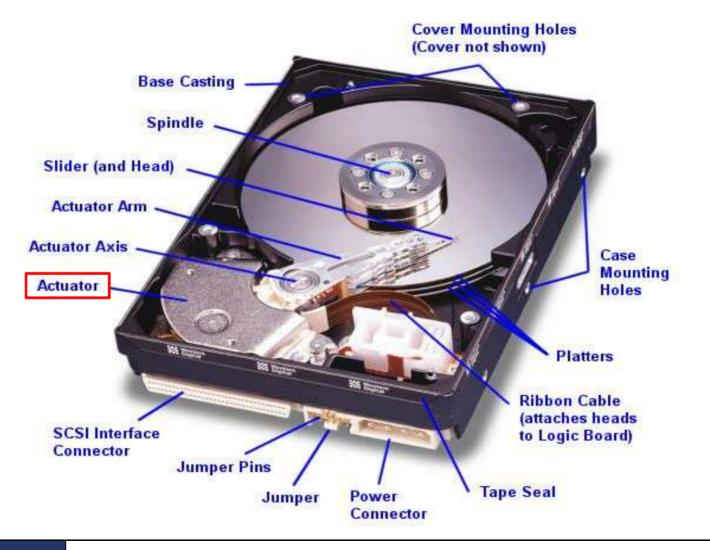
✓ Enterprise Storage

- To be configured in groups (aggregation)
- To randomly access small portions of large data spaces
- reliability and performance are critical characteristics

Introduction


RPM

Mechanics - major components

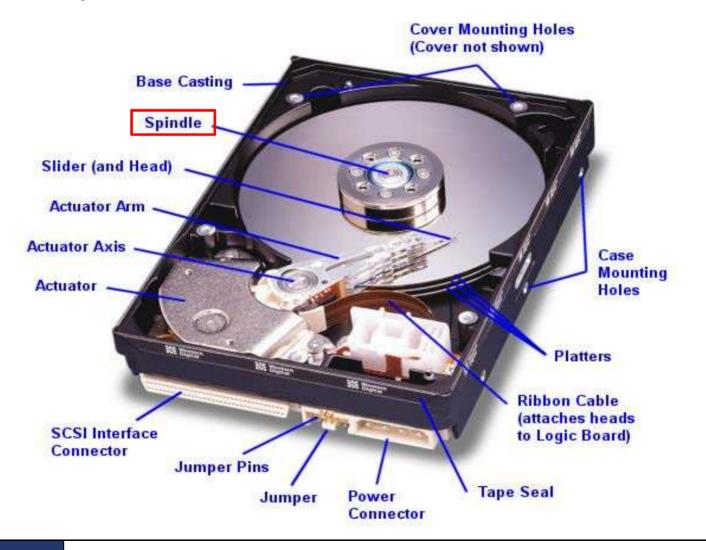

Mechanics – Head/Disc Assembly

- Mechanics Head/Disc Assembly (ES)
 - ✓ Head/Disk Assembly(HDA) heads, actuator, spindle, discs, air handling system
 - ✓ ES drives operates at higher rpm
 - maintaining a higher tolerance for external disturbance
 - require more power to operate, creating more heat
 - In the event, can be the influence of neighboring drives
 - ✓ To prevent :
 - filter for particles, desiccant to control humidity, eliminating organic
 - O-ring seals, better gasketing, air control system
 - ✓ These little things adds cost but improves reliability

- Mechanics Head/Disc Assembly (PS)
 - ✓ PS drives are designed for reliability
 - ✓ But they tend to compromise where components can be eliminated to save cost
 - ✓ The O-rings and desiccant, for example, are usually eliminated in PS drives

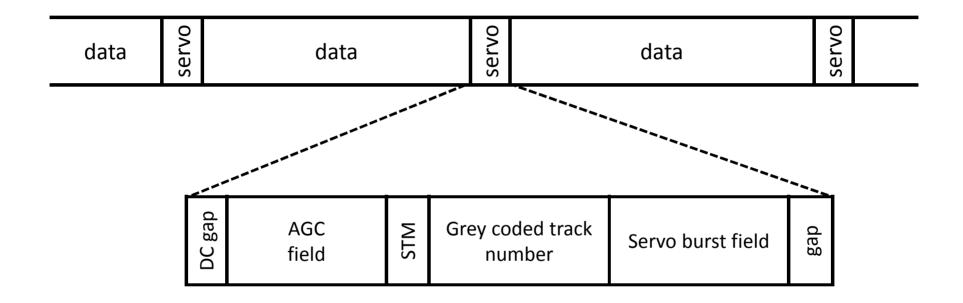
Mechanics – Actuator

• Mechanics – Actuator



page 19

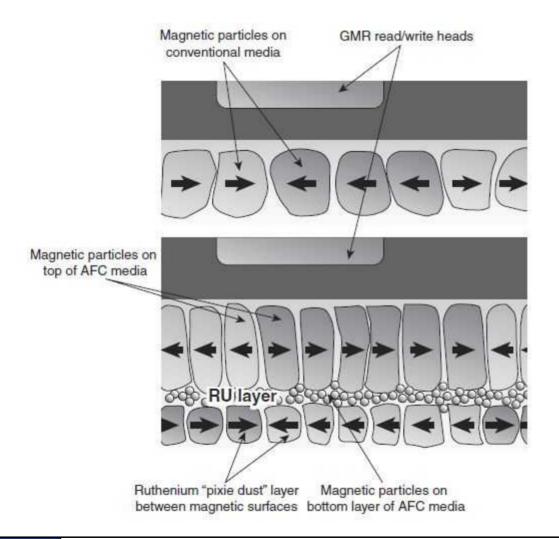
Mechanics – Actuator


- ✓ Larger magnets are key to achieving faster seek times → higher cost
- ✓ Inside every drive is a latch to hold the actuator when power is off
- ✓ The latch has a magnetic field associated with it, affect seek performance when the actuator is operating near the latch
- ✓ In PS drive, no compensation for this, as seek performance is not critical
- ES drives have a bi-stable latch that does not affect performance

• Mechanics – Spindle

- Mechanics Spindle
 - ✓ For over 15 years drives spun no faster than 3,600 rpm
 - ✓ 3,600 rpm → 5,400 rpm → 7,200 rpm → 10,000 rpm → 15,000 rpm
 - ✓ Higher rpm → Off-track head → *mis-read* and a *rotational miss*
 - ✓ Higher rpm requires more expensive motors, windage, and vibration
 - ✓ PS drives use a cantilever motor design, only at the base deck end
 - \checkmark ES motor at both ends, with an attachment to the top cover \rightarrow cost extra

Electronics – Servo processor

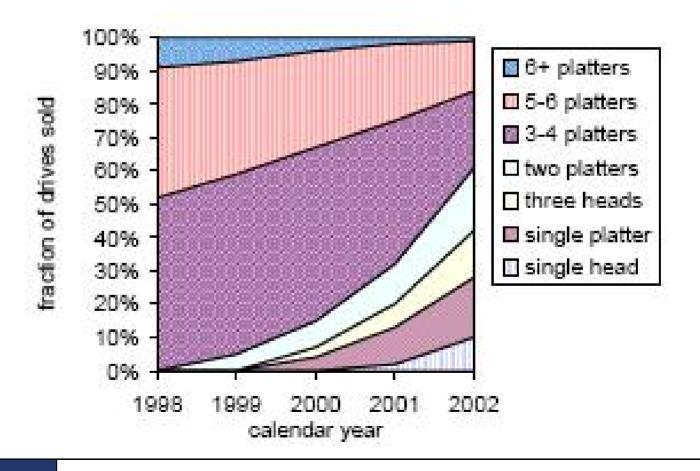

Electronics – Interface

- ✓ ES drive characteristic
 - the ES ASIC gate count is more than 2x a PS drive
 - the embedded SRAM space for program code is 2x
 - the permanent flash memory for program code is 2x
 - data SRAM and cache SRAM space is more than 10x
- ✓ ES drive two processors
 - one dedicated to servo
 - other for interface and read/write handling
- ✓ PS drive single processor
 - handle all three basic processor tasks (interface, read/write, servo processing)

Electronics – Memory

- ✓ ES command set is more than twice as large as that for ATA
- ✓ requiring more permanent flash for code and increased SRAM at runtime
- ✓ allows for vendor-specific extensions which require additional code space
- ✓ allowing greater flexibility in configuration

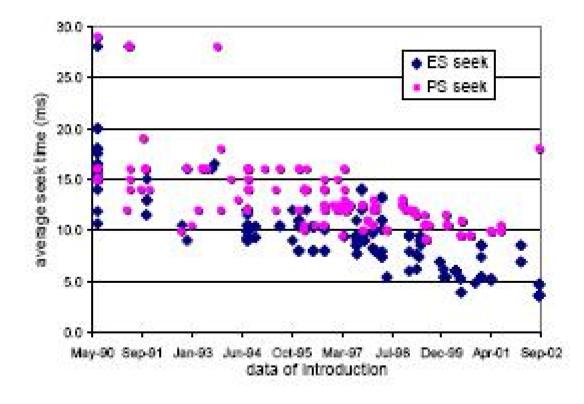
Electronics – Materials



page 26

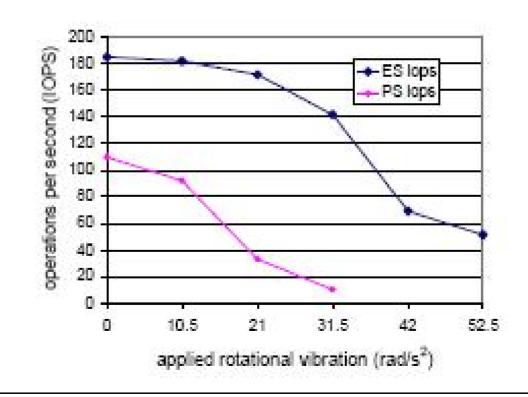
- **Electronics Manufacturing**
 - ✓ The build and test times for ES drives are considerably longer than PS drives
 - \checkmark Increased test time \rightarrow more reliable

- **Capacity** Size of Platters
 - ✓ 15,000 rpm drives use 2.5" platters to support the faster spindle speeds
 - ✓ 7,200 rpm drives use 3.7" platters
 - ✓ ES drive uses more platters to achieve the same capacity as a PS drive
 - ✓ The smaller platters two performance advantages :
 - ability to spin faster and faster seeking
 - random access much faster than PS drive


- **Capacity Number of Platters**
 - ✓ Fewer platters have less heads → faster seeks

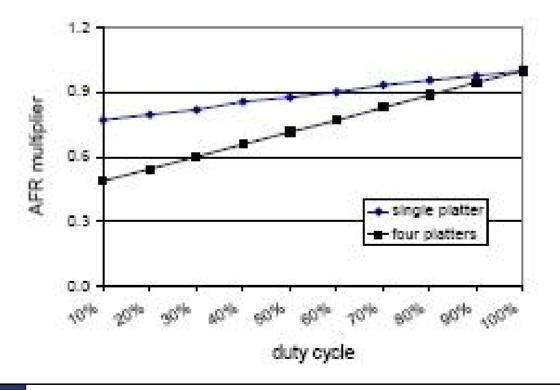
Capacity – Data rate

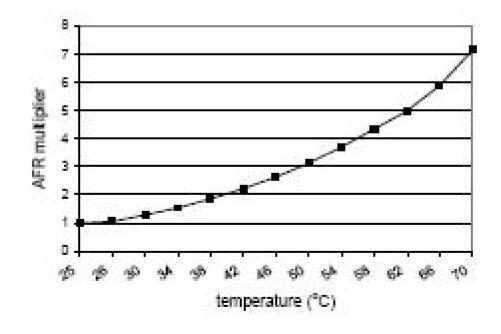
- ✓ ES drives have higher data rate than a PS drive
- ✓ However, PS drive has an advantage in media size
 - ✓ PS drive : 80 mm (3.3"), 95 mm (3.7") platters in 10,000 rpm
 - ✓ ES drive : 65 mm (2.5") platter in 15,000 rpm
- ✓ The larger media size helps the PS drives follow closely in data rate


- **Random performance Seek times**
 - ✓ Seek performance of PS drives always lags that of ES drives

- **Random performance Seek times**
 - ES drive is focused on achieving the highest random access performance

queue depth	read (8 KB)		write (8 KB)	
	PS	ES	PS	ES
1 requests	65 req/s	115 req/s	105 req/s	184 req/s
2 requests	66 req/s	116 req/s	105 req/s	184 req/s
4 requests	71 req/s	146 req/s	105 req/s	187 req/s
8 requests	79 req/s	174 req/s	105 req/s	190 req/s
16 requests	89 req/s	202 req/s	108 req/s	200 req/s
32 requests	101 req/s	235 req/s	108 req/s	213 req/s


- **Random performance Rotational vibration**
 - ✓ Since PS drives are built to be in single drive systems → not an important factor
 - ✓ ES drives are designed to operate in cabinets full of spinning drives


Reliability

- ✓ MTBF
 - ✓ PS drives : 8 hours/day for 300 days/year
 - ✓ ES drives : 24 hours/day for 365 days/year

- **Reliability Duty cycle**
 - ✓ Reliability is decreased with higher duty cycle
 - ✓ The effect is greater for drives with larger numbers of platters

- **Reliability** Temperature
 - ✓ Reliability decreases with increases in ambient temperature
 - ✓ To prevent contain temperature sensors

- **Reliability** Overall reliability
 - ✓ Reported a failure rate[Talagala99] :
 - ✓ 25 % for 24 IDE drives
 - ✓ 2 % for 368 SCSI drives

Summary and Discussion

Summary

- ✓ **Data rate** is proportional to spindle speed, areal density, and platter size
- ✓ Fast seeks more and target the enterprise market (cost extra)
 - include large magnets, better bearings, and stiffer actuators
- Protection from rotational vibration (cost extra)
 - includes better motors, top covers, stiffer actuators
- ✓ Better scheduling (cost extra)
 - requiring more code space, more memory for re-order queues or algorithm

Summary and Discussion

- **Summary**
 - ✓ Interface electronics (cost extra)
 - more customer-modifiable options and host connectivity
 - ✓ As a result, High reliability requires cost extra

Conclusions

• ATA vs. SCSI

- ✓ They derive from the different requirements of the respective markets
 - \checkmark PS drive : lower cost
 - ✓ ES drive : faster random access

Question and Answer

