
Extensible Storage Engine (ESE) Database File (EDB)
format specification

Analysis of the Extensible Storage Engine (ESE) Database File (EDB) format

By Joachim Metz <jbmetz@users.sourceforge.net>

Summary
The Extensible Storage Engine (ESE) Database File (EDB) format is used by many Microsoft
application to store data such as Windows Mail, Windows Search, Active Directory and
Exchange. This specification is based on some available documentation but mainly on reverse
engineering of the file format.

This document is intended as a working document for the Extensible Storage Engine (ESE)
Database File (EDB) format specification. Which should allow existing Open Source forensic
tooling to be able to process this file type.

page i

Document information
Author(s): Joachim Metz <jbmetz@users.sourceforge.net>

Abstract: This document contains information about the Extensible Storage Engine
Database File format

Classification: Public

Keywords: Extensible Storage Engine, ESE, ESENT, EDB

License
Copyright (c) 2009-2010 Joachim Metz <jbmetz@users.sourceforge.net>
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and with no Back-Cover Texts. A copy of the license
is included in the section entitled "GNU Free Documentation License".

Version
Version Author Date Comments

0.0.1 J.B. Metz September 2009
October 2009

Worked on initial version.

0.0.2 J.B. Metz October 5, 2009
October 6, 2009

Added information about page B+-trees.

0.0.3 J.B. Metz October 8, 2009 Added information about tagged data types for EDB revision
2.

0.0.4 J.B. Metz November 16, 2009
November 18, 2009

Additional information about indexes, page flags,
MSysDefrag2 table.

0.0.5 J.B. Metz February 22, 2010 Additional Windows 7 Search information.

0.0.6 J.B. Metz May 14, 2010 Change amount of in number of
Additional long value information.

0.0.7 J.B. Metz May 17, 2010 Additional common page key information.

0.0.8 J.B. Metz May 20, 2010
May 26, 2010

Additional information about template tables (thanks to
J. Aloysius), root and branch pages.

0.0.9 J.B. Metz June 2010 Additional multi value information.

0.0.10 J.B. Metz July 2010 Additional index leaf page entry information.

0.0.11 J.B. Metz September 2010 Windows 7 seems to use extended page format for 32 KiB
pages, but not for 4 KiB pages. Currently assumed that 16
KiB pages also use the extended format.

page ii

Table of Contents
1. Overview..1

1.1. Test version...1
1.2. File structure...1

2. (Database) file header..2
2.1. File type..6
2.2. File format version and revision...6
2.3. Database state...7

3. Hierarchical page-based storage..7
3.1. Page header...8

3.1.1. Changes in Exchange 2003 SP1...9
3.1.2. Changes in Windows 7...10
3.1.3. Page flags..10

3.2. Page tags...11
3.2.1. Page tag - format revision 12 and earlier...11
3.2.2. Page tag - format revision 17 and later..11
3.2.3. Page tag flags..11

3.3. Page B+-tree...12
3.3.1. Root page..12

3.3.1.1. Root page header...12
3.3.2. Branch page...13

3.3.2.1. Branch page header...13
3.3.2.2. Branch page entry...13

3.3.3. Leaf page values...14
3.3.3.1. Leaf page header...14
3.3.3.2. Leaf page entry..14

3.3.3.2.1. Leaf page entry - format revision 17 and later..15
3.4. Page values...15

3.4.1. Space tree page values..15
3.4.1.1. Space tree leaf page header...15
3.4.1.2. Space tree leaf page entry...15

3.4.2. Index page values..16
3.4.2.1. Index leaf page entry data...16

3.4.3. Long value page values...16
3.4.4. Table page values..16

4. Data definitions..16
4.1. Data definition header..17
4.2. Data type definitions..17

4.2.1. Variable size data type size array entry...18
4.2.2. The tagged data type definitions - format revision 2...18
4.2.3. The tagged data type definitions - format revision 9 and later......................................18

4.2.3.1. Tagged data type offset array entry..19
4.2.3.2. Tagged data type flags..19

4.3. Example: the catalog (data type) definition...20
4.4. Long Values..22
4.5. Mutli values..22

5. Database...24
5.1. Database signature..24

5.1.1. Database time..24
6. Columns..24

6.1. Column type..24

page iii

6.2. Column flags (group of bits)..26
6.3. Compression...29

6.3.1. 7-bit ASCII compression..29
6.3.2. 7-bit Unicode compression...29
6.3.3. XPRESS compression...29

7. Backup..29
7.1. Backup information..29

8. Transaction log...30
8.1. Log information..30
8.2. Log position..30
8.3. (Backup) log time...30

9. Windows data types...31
9.1. The LCID structure...31

9.1.1. Sort orders...31
9.1.2. Language identifiers..32

10. Tables...44
10.1. Table flags (group of bits)..44
10.2. metadata tables...44

10.2.1. Catalog (MSysObjects and MSysObjectsShadow)..44
10.2.1.1. Catalog types...46
10.2.1.2. KeyFldIDs...46

10.2.2. MSysUnicodeFixupVer1..46
10.2.3. MSysUnicodeFixupVer2..47
10.2.4. MSysDefrag1..47
10.2.5. MSysDefrag2..47

10.3. Template tables...48
11. Indexes..48

11.1. Index flags (group of bits)..48
12. Notes...51

12.1. The database metadata table..51
Appendix A. References..52
Appendix B. GNU Free Documentation License...52

page iv

1. Overview
The Extensible Storage Engine (ESE) Database File (EDB) format is used by many Microsoft
application to store data such as Windows Mail, Windows Search, Active Directory and
Exchange. The The Extensible Storage Engine (ESE) is also known as JET Blue.

There are multiple types of ESE:
Name Usage

ESENT The database engine for Active Directory and many Microsoft Windows
components. Unlike other versions of ESE (which use 5-MiB log files and 4-KiB
page sizes), the Active Directory implementation of ESENT uses 10-MiB log files
and 8-KiB pages.

ESE97 The database engine in Exchange Server 5.5.

ESE98 The database engine in Exchange 2000 Server, Exchange Server 2003, and
Exchange Server 2007. Exchange 2000 and 2003 use 4-KiB page sizes and 2007
8-KiB.

Some sources (add reference) claim that the following data is stored using ESE:
• Active Directory (NTDS)
• File Replication service (FRS)
• Windows Internet Name service (WINS)
• DHCP
• Security Configuration Engine (SCE)
• Certificate Server
• Terminal Services Session folder
• Terminal Services Licensing service
• Catalog database
• Help and Support Services
• Directory Synchronization service (MSDSS)
• Remote Storage (RSS)
• Phone Book service
• Single Instance Store (SIS) Groveler
• Windows NT Backup/Restore
• Exchange store
• Microsoft Exchange folder (SRS and DXA)
• Key Management service (KMS)
• Instant Messaging
• Content Indexing

1.1. Test version

The following version of programs were used to test the information within this document:
• Exchange 2007with corresponding eseutil
• Windows Search XP, Vista and 7 with corresponding esentutl

1.2. File structure

An ESE database (EDB) file consist of the following distinguishable elements:
• file header

page 1

• fixed size pages

Characteristics Description

Byte order little-endian

Date and time values in both UTC and local time

Character string ASCII strings are stored in extended ASCII with a codepage.
Unicode strings are stored in UTF-16 little-endian without the byte order
mark (BOM).

The pages contain the database, which basically consists of tables and indexes.

A table is made up out of:
• rows (also referred to as records)
• columns

An EDB contains several metadata tables, these are tables needed for maintaining the database.
The metadata tables are:

• the space tree
• the catalog and the backup catalog

Because ESE stores the database data in fixed size pages, long values are used to store values that
are larger than the page size.

2. (Database) file header
The (database) file header is stored in the first database page. The byte value in the remainder of
the page are set to 0. A copy of the (database) file header is stored in the second page.

The (database) file header is (at least) 668 bytes of size and consists of:
offset size value description

0 4 Checksum
The checksum is a XOR over the 32-bit
little-endian values in the header starting
at offset 8 to offset 4096. The value
0x89abcdef is used as the initial value.

4 4 “\xef\xcd\xab\x89” The signature

8 4 File format version

12 4 File type
See section: 2.1 File type

16 8 Database time
Consists of a database time
See section: 5.1.1 Database time

24 28 Database signature
Consists of a database signature
See section: 5.1 Database signature

52 4 Database state

page 2

offset size value description

See section: 2.3 Database state

56 8 Consistent position
Consists of a log position
See section: 8.2 Log position
This is the log position that was used
when the database was last brought to a
clean shutdown state or NULL if the
database is in a dirty state.

64 8 Consistent date and time
Consists of a log time
See section: 8.3 log time
This is the time when the database was
last brought to a clean shutdown state or
NULL if the database is in a dirty state.

72 8 Attach date and time
Consists of a log time
See section: 8.3 log time
The date and time when the database
was last attached.

80 8 Attach position
Consists of a log position
See section: 8.2 Log position
The log position that was used the last
time the database was attached.

88 8 Detach date and time
Consists of a log time
See section: 8.3 log time
The date and time when the database
was last detached.

96 8 Detach position
Consists of a log position
See section: 8.2 Log position
The log position that was used the last
time the database was detached.

104 28 Log signature
Consists of a database signature
See section: 5.1 Database signature

132 4 0 Unknown
Empty value

136 24 Previous full backup
Consists of a backup information
See section: 7.1 Backup information

160 24 Previous incremental backup
Consists of a backup information
See section: 7.1 Backup information

page 3

offset size value description

184 24 Current full backup
Consists of a backup information
See section: 7.1 Backup information

208 4 Shadowing disabled

212 4 Last object identifier
The last object identifier in the database

216 4 Major version
Represents the Windows NT major
version when the databases indexes were
updated.

220 4 Minor version
Represents the Windows NT minor
version when the databases indexes were
updated.

224 4 Build number
Represents the Windows NT build
number when the databases indexes were
updated.

228 4 Service pack number
Represents the Windows NT service
pack number when the databases indexes
were updated.

232 4 File format revision

236 4 Page size
Value in bytes

240 4 Repair count

244 8 Repair date and time
Consists of a log time
See section: 8.3 log time

252 28 0 Unknown
Empty values

280 8 Scrub database time
Consists of a database time
See section: 5.1.1 Database time

288 8 Scrub date and time
Consists of a log time
See section: 8.3 log time

296 8 Required log
Consists of 2x 32-bit values

304 4 Upgrade Exchange 5.5 format

308 4 Upgrade Free Pages

312 4 Upgrade Space Map Pages

page 4

offset size value description

316 24 Current shadow copy backup
Consists of a backup information
See section: 7.1 Backup information

340 4 Creation file format version

344 4 Creation file format revision

348 16 Unknown3

364 4 Old repair count

368 4 ECC fix success count

372 8 Last ECC fix success date and time
Consists of a log time
See section: 8.3 log time

380 4 Old ECC fix success count

384 4 ECC fix error count

388 8 Last ECC fix error date and time
Consists of a log time
See section: 8.3 log time

396 4 Old ECC fix error count

400 4 Bad checksum error count

404 8 Last bad checksum error date and time
Consists of a log time
See section: 8.3 log time

412 4 Old bad checksum error count

416 4 Committed log
Consists of the lower 32-bit value

420 24 Previous (shadow) copy backup
Consists of a backup information
See section: 7.1 Backup information

444 24 Previous differential backup
Consists of a backup information
See section: 7.1 Backup information

468 40 Unknown
Empty values

508 4 NLS major version
Introduced in Windows 7 part of OS
version

512 4 NLS minor version
Introduced in Windows 7 part of OS
version

516 148 Unknown
Empty values

664 4 0x01000000 Unknown flags

page 5

offset size value description

If not set the ECC and checksum counts
and date and time values are not shown
by eseutil, could be some extended data
flag

unknown3:
00000000: 2f 1d 07 0d 09 6b 00 00 00 00 00 00 00 00 00 00 /....k..

found in tmp.edb

Find location of:
fUpgradeDb value at offset 132?

 Streaming File: No (implied by file type)
 Dbid: 1

signSLV, fSLVExists

 Last checksum finish Date: 00/00/1900 00:00:00
Current checksum start Date: 00/00/1900 00:00:00
 Current checksum page: 0

Some of the values in the file header corresponds correspond with those in the miscellaneous
database information (JET_DBINFOMISC).

In a clean database the consistent position, date and time matches the detach position, date and
time.

2.1. File type

Value Identifier Description

0 Database

1 Streaming file

2.2. File format version and revision

According to [MSDN] the file format version and revision consist of the following values:

Version Revision Description

0x00000620 0x00000000 Original operating system Beta format (4/22/97).

0x00000620 0x00000001 Add columns in the catalog for conditional indexing and OLD
(5/29/97).

0x00000620 0x00000002 Add the fLocalizedText flag in IDB (6/5/97).

0x00000620 0x00000003 Add SPLIT_BUFFER to space tree root pages (10/30/97).

0x00000620 0x00000002 Revert revision in order for ESE97 to remain forward-
compatible (1/28/98).

0x00000620 0x00000003 Add new tagged columns to catalog ("CallbackData" and

page 6

Version Revision Description

"CallbackDependencies").

0x00000620 0x00000004 Super Long Value (SLV) support: signSLV, fSLVExists in db
header (5/5/98).

0x00000620 0x00000005 New SLV space tree (5/29/98).

0x00000620 0x00000006 SLV space map (10/12/98).

0x00000620 0x00000007 4-byte IDXSEG (12/10/98).

0x00000620 0x00000008 New template column format (1/25/99).

0x00000620 0x00000009 Sorted template columns (6/24/99).
Used in Windows XP SP3

0x00000620 0x0000000b Contains the page header with the ECC checksum
Used in Exchange

0x00000620 0x0000000c Used in Windows Vista (SP0)

0x00000620 0x00000011 Support for 2 KiB, 16 KiB and 32 KiB pages.
Extended page header with additional ECC checksums.
Column compression.
Space hints.
Used in Windows 7 (SP0)

0x00000623 0x00000000 New Space Manager (5/15/99).

2.3. Database state

The database state consist of the following values:

Value Identifier Description

1 JET_dbstateJustCreated The database was just created.

2 JET_dbstateDirtyShutdown The database requires hard or soft recovery to be
run in order to become usable or movable. One
should not try to move databases in this state.

3 JET_dbstateCleanShutdown The database is in a clean state. The database can
be attached without any log files.

4 JET_dbstateBeingConverted The database is being upgraded.

5 JET_dbstateForceDetach Internal.
This value is introduced in Windows XP

3. Hierarchical page-based storage
The EDB file uses a fixed size page to store data. The size of the page is defined in the file header.
These pages are ordered in a B+-tree. The pages can B+-tree references to other pages or data.

page 7

These page B+-trees make up the database tables and indexes.

Every page B+-tree refers to a 'Father of the Data Page' (FDP) object identifier, which is basically
a unique number for the specific page B+-tree.

A page consists of:
• a page header
• the page values
• the page tags (page value index)

The page (file) offset and number can be calculated as following:
page offset = (page number x page size) + page size
 = (page number + 1) x page size

page number = (page offset - page size) / page size
 = (page offset / page size) - 1

3.1. Page header

The page header is 40 or 80 bytes of size and consists of:
offset size value description

Before Exchange 2003 SP1 and Windows Vista

0 4 The XOR checksum
The checksum is a XOR over the 32-bit
little-endian values in the header starting
at offset 4 to the end of the page. The
value 0x89abcdef is used as the initial
value.

4 4 Page number
Used for the XOR checksum

Exchange 2003 SP1 and Windows Vista and later
(As of version 0x620 revision 0x0b)
The new record format page flag must be set

0 4 The XOR checksum
The checksum is a XOR over the 32-bit
little-endian values in the header starting
at offset 8 to the end of the page. The
page number is used as the initial value.

4 4 The ECC checksum
[TODO]

Windows 7 and later
(As of version 0x620 revision 0x11)

0 8 Checksum
[TODO]

Common

8 8 Database last modification time
Consists of a database time

page 8

offset size value description

See section: 5.1.1 Database time
This value indicates the database time
the page was last modified.

16 4 Previous page number
This value indicates the page number of
the adjacent left page on the leaf.

20 4 Next page number
This value indicates the page number of
the adjacent right page on the leaf.

24 4 Father Data Page (FDP) object identifier
This value indicates which page B+-tree
this page belongs to.

28 2 Available data size
The number of bytes available within the
page.

30 2 Available uncommitted data size
The number of uncommitted bytes
within the page. Uncommitted bytes are
free but available for reclaim by rollback
on the page.

32 2 (First) available data offset
The offset is relative from the end of the
page header

34 2 (First) available page tag

36 4 Page flags
See section: 3.1.3 Page flags

Extended page header Windows 7 and later
(As of version 0x620 revision 0x11)
Only for pages of 16 KiB and 32 KiB ?

40 8 Extended checksum 1
[TODO]

48 8 Extended checksum 2
[TODO]

56 8 Extended checksum 3
[TODO]

64 8 Page number

72 8 Unknown
Empty values

3.1.1. Changes in Exchange 2003 SP1

According to [MSDN] Exchange Server 2003 Service Pack 1 (SP1) introduces a new feature
named Error Correcting Code (ECC) Checksum. ECC Checksum is a new checksum format that

page 9

enables the correction of single-bit errors in database pages (in the .edb file, .stm file, and
transaction log files). This new checksum format uses 64-bits, whereas the earlier checksum
format uses 32-bits. Earlier format databases can be used with the new code, but current format
databases cannot be used with earlier versions of ESE. After the database engine is updated, all
pages that are written to the database have the new checksum format. Pages that are read and not
modified do not have their checksum format upgraded.

Database pages with the earlier-format checksum start with a 32-bit checksum, followed by a 32-
bit page number, which is used to verify that the requested page is actually read off disk.

The new checksum format removes the 32-bit page number and instead starts with an eight-byte
checksum. The page number is used as an input parameter in calculating the checksum. Therefore,
if the wrong page is read off disk, there will be a checksum mismatch.

The current checksum format actually consists of two 32-bit checksums. The first is an XOR
checksum, calculated much like the earlier format checksum. The page number is used as a seed in
the calculation of this checksum. The second 32-bit checksum is an ECC checksum, which allows
for the correction of single-bit errors on the page.

3.1.2. Changes in Windows 7

In Windows 7, for pages of 16 KiB and 32 KiB, the page header was extended with mainly
additional error recovery checksums.

3.1.3. Page flags

The page flags consist of the following values:

Value Identifier Description

0x00000001 The page is a root page

0x00000002 The page is a leaf page

0x00000004 The page is a parent page

0x00000008 The page is empty

0x00000010

0x00000020 The page is a space tree page

0x00000040 The page is an index page

0x00000080 The page is a long value page

0x00000100

0x00000200

0x00000400 Unknown

0x00000800 Unknown
Does not seems to be the primary page flags?
Flag for unique keys?

0x00001000

0x00002000 New record format

page 10

Value Identifier Description

New checksum format

Index page unique keys/non-unique keys

3.2. Page tags

The page tags are stored at the end of the the page. The page tags are stored back to front. The
page header indicates the first unused page tag.

Note that there can be more page tags in the page than being used.

3.2.1. Page tag - format revision 12 and earlier

A page tag is 4 bytes of size and consists of:
offset size value description

0.0 13 bits Value offset
The offset is relative after the page
header

1.5 3 bits Page tag flags
See section: 3.2.3 Page tag flags

2.0 16 bits Value size

3.2.2. Page tag - format revision 17 and later

In Windows 7 (format revision 0x11), for pages of 16 KiB and 32 KiB, the page tags were
changed, to support these page sizes. For these page sizes the page tag flags have been moved to
the first 16-value in the leaf page entry.

A page tag is 4 bytes of size and consists of:
offset size value description

0.0 15 bits Value offset
The offset is relative after the extended
page header

3.7 1 bit Unknown
Sometimes set

2 15 bits Value size

3.6 1 bit Unknown
Sometimes set

3.2.3. Page tag flags

The page tag flags consist of the following values:

page 11

Value Identifier Description

0x0001 v Unknown (Value)
The page value contains variable sized data types?

0x0002 d Defunct
The page value is no longer used

0x0004 c Common key
The page value contains a common page key size

3.3. Page B+-tree

In the B+-tree hierarchy there are multiple types of pages:
• root page
• branch page
• leaf page

These different type of pages contain different types of page values.

3.3.1. Root page

The root page is identified by the 'is root' flag.

The root page contains different types of values:
• the root page header
• branch or leaf page entries

3.3.1.1. Root page header

The root page header is the first page tag within the page.

The root page header is 16 bytes of size and consists of:
offset size value description

0 4 The initial number of pages
The number of pages when the object
was first created in the page tree.

4 4 The parent Father Data Page (FDP)
number

8 4 Extent space
0x00000000 => single
0x00000001 => multiple

12 4 The space tree page number
0 if not set
masks 0xff000000 if not set
(pgnoOE)

The FDP flag in the eseutil seems to be implied if the parent Father Data Page (FDP) number
(pgnoFDP) is set.

page 12

The primary extent represents the the initial number of pages followed by a dash and a letter after
the that indicates whether the space for the B-Tree is currently represented using multiple pages
("m") or a single page ("s").

The space tree page number is valid when the extent space > 0.

3.3.2. Branch page

The branch page not identified by any flags, the 'is leaf' flag should not be set. The branch page
can contain the 'is parent' flag.

What is the significance of the 'is parent' flag?

Both the branch page contains different types of values:
• the branch page header
• branch page entries

3.3.2.1. Branch page header

The branch page header is the first page tag within the page.

If the branch page has no 'is root' flag the branch page header is variable of size and consists of:
offset size value description

0 ... Common page key

3.3.2.2. Branch page entry

The branch page entry is variable of size and consists of:
offset size value description

If page tag flag 0x04 is set

0 2 Common page key size

Common for all page flags

0 2 Local page key size

2 (size) The local page key
The highest page key in the page B+-tree
branch
Note that the last father data page entry
contains an empty page key

... 4 Child page number
The child page number is invalid if it
exceeds the last page in the file

The actual page key of the page entry is a combination of the part of the common page key, which
is stored in the page header, specified by the size of the common page key size value, followed by
the local page key stored in the page entry.

page 13

3.3.3. Leaf page values

The leaf page is identified by the 'is leaf' flag.

The leaf page contains different types of values:
• the leaf page header
• leaf page entries

There are multiple types of leaf pages:
• index leaf pages; identified by the 'is index' page flag
• long value leaf pages; identified by the 'is long value' page flag
• table leaf pages

Every type of leaf page has a different type of leaf page entry.

3.3.3.1. Leaf page header

The leaf page header is the first page tag within the page.

If the leaf page has no 'is root' flag the leaf page header is variable of size and consists of:
offset size value description

0 ... Common page key

If there is no leaf page header the size of the corresponding page tag is 0.

3.3.3.2. Leaf page entry

The leaf page entries for the different types of leaf pages use a similar entry structure.

Note that the 3 MSB of the first 2 bytes can contain the page tag flags, see format revision 17.

The leaf page entry is variable of size and consists of:
offset size value description

If page tag flag 0x04 is set

0 2 Common page key size

Common for all page flags

2 2 Local page key size

4 ... Local page key

... ... Entry data

The actual page key of the page entry is a combination of the part of the common page key, which
is stored in the page header, specified by the size of the common page key size value, followed by
the local page key stored in the page entry.

page 14

3.3.3.2.1. Leaf page entry - format revision 17 and later

In Windows 7 (format revision 0x11), for pages of 16 KiB and 32 KiB, the size of the page key in
the leaf page entry was changed.

The upper 3-bits of the first 16-bit value (either the key type or the size of the page key) contain
the page tag flags (See section: 3.2.3 Page tag flags).

3.4. Page values

3.4.1. Space tree page values

The space tree page is identified by the following flags:
• is space tree

Is the root flag always set?

Space tree branch pages are similar to branch pages.

The space tree leaf page contains different types of values:
• the space tree page header
• space tree page entries

The primary space tree page referenced from the father data page contains information about the
owned pages. The secondary space tree page which is the primary space tree page number + 1
contains information about the available pages.

3.4.1.1. Space tree leaf page header

The space tree page header is the first page value within the page.

The space tree page header is 16 bytes of size and consists of:
offset size value description

0 16 0 Unknown

When the space tree page was referenced from the father data page the space tree page header
contains 0 bytes.

The space tree header can also be empty (have a page value size of 0). related to root flag value?

3.4.1.2. Space tree leaf page entry

The space tree page entry is 10 bytes of size and consists of:
offset size value description

0 2 4 Size of the page key

2 4 Key value

6 4 number of pages

page 15

Owned space The number of pages of all the space tree page entries in the primary space
tree page make up the number of owned space.

Available space The number of page of all the space tree page entries make up the number
of available space.

Note that space tree entries with the defunct page flag (0x02) are not included.

3.4.2. Index page values

The index page is identified by the following flags:
• is index

Index branch pages are similar to branch pages.

3.4.2.1. Index leaf page entry data

The index leaf page entry data is variable of size and consists of:
offset size value description

0 ... Record page key

3.4.3. Long value page values

The long value pages are identified by the following flags:
• is long value

For the format of the long value data definitions see section: 4.4 Long Values.

3.4.4. Table page values

The table page values are not identified by a flag. So basically if none of the previously mentioned
flags is defined the page contains table value data definitions. See section: 4 Data definitions for
more information.

4. Data definitions
In ESE there are multiple categories of table data definitions, each category uses different data
type identifiers.
Data type
identifiers

Amount Category Description

0x0001 – 0x007f 126 Fixed size Fixed size data types (columns) use a
defined number of space, even if no
value is defined.

0x0080 - 0x00ff 127 Variable size Variable size data types (columns) can
contain up to 256 bytes of data.
An offset array is stored in the record
with the highest variable size data

page 16

Data type
identifiers

Amount Category Description

type set. Each array entry requires two
bytes.

0x0100 - 0xfffff 64993 Tagged Tagged data types (columns) are data
types that occur rarely or have
multiple occurrences. Tagged data
types have an unlimited data size. The
data type identifier and size are stored
with the data. When a tagged data
type does not contain data no
information about it stored.

The data definitions are stored in (data definition) records. Such a data definition records contains
the values of a table row.

According to [MSDN] data type identifiers 10 and 11 can be defined as variable columns

4.1. Data definition header

The data definition header is 4 bytes of size and consists of:
offset size value Description

0 1 Last fixed size data type

1 1 Last variable size data types

2 2 The offset to the variable size data types
The offset is relative from the start of the
data definition header

4.2. Data type definitions

The data type definitions is variable of size and consists of:
offset size value Description

0 ... Fixed size data type definitions

... ... Unknown trailing data
used to handle tagged data type
definitions?

... ... The variable size data types size array

... ... The variable size data types data array
Contains data for a variable data type

... ... The tagged data type definitions

Although the corresponding table definition does not contain fixed size and/or variable size data
type definitions the data type definition still can contain them. They need to be handled to find the
offset of the tagged data type definitions.

page 17

The data type definitions will contain temple table tagged data type identifiers before table tagged
data type identifiers. Also see section: 10.3 Template tables.

4.2.1. Variable size data type size array entry

The variable size data type size array entry is 2 bytes of size and consists of:
offset size value Description

0 2 The variable size data type identifier
Contains a 2 byte size value for every
variable data type. The MSB signifies
that the variable size data type is empty.
Also the size of the previous variable
size data type needs to be subtracted
from the current size.

4.2.2. The tagged data type definitions - format revision 2

For EDB format revision 2 the tagged data type definitions consist of multiple entries.

A tagged data type definitions entry is variable of size and consists of:
offset size value Description

0 2 The tagged data type identifier

2 2 Size of the tagged data type data
The offset is relative from the start of the
tagged data type offset array
flag bits:
0x8000 (?)

4 1 Tagged data type flags
Currently only 0x00 values have been
seen

5 ... Value

When the 0x8000 flag bit is set the tagged data type offset array entry is directly followed by the
value data. The size of the tagged data type data contains the size of the value data. The value is
seems to be preceded by the tagged data type flags?

4.2.3. The tagged data type definitions - format revision 9 and later

For format revision 9 and later the tagged data type definitions consist of an an offset and data
array.

offset size value Description

0 ... The tagged data types offset array

... ... The tagged data types data array

page 18

4.2.3.1. Tagged data type offset array entry

The tagged data type offset array entry is 4 bytes of size and consists of:
offset size value Description

0 2 The tagged data type identifier

2 2 Size or offset of the tagged data type
data
The offset is relative from the start of the
tagged data type offset array
flag bits:
0x4000 (tagged data type flags present)
0x8000 (?)

What does a size of 0 indicate: that the value is empty or contains the default value?

Some values are preceded by the tagged data type flags if the 0x4000 flag bit is set
The number of tagged data types is deduced from the first tagged data type data offset?

As of Windows 7 and later (version 0x620 revision 0x11) the tagged data type flags are always
present and no longer controlled by the flag bits.

4.2.3.2. Tagged data type flags

Value Identifier Description

0x01 Variable size value

0x02 Compressed

0x04 Data is stored in a long value
he data type definition contains a long value
identifier, which is the key of the long value in
reverse

0x08 Multi value
See section: 4.5 Mutli values

0x10 Multi value contains size definition instead of
offset definitions

Are multi long values used?

Tag data type flags:
01 => unicode value or single value (not the sparse flag)
05 => Long value (4 byte long value identifier or page key)
08 => (fixed size type?) multi value
09 => (variable size type?) multi value
18 => (fixed size type?) multi value (with size definition)

column definition name : System_Kind
column definition type : Text (extended ASCII
or Unicode string) (JET_coltypText)
(450) tagged data type identifier : 450
(450) tagged data type offset : 0x4244 (580)

page 19

(450) tagged data type size : 24
(450) tag byte : 0x18
(450) tagged data type:
00000000: 08 6c 00 69 00 6e 00 6b 00 70 00 72 00 6f 00 67 .l.i.n.k .p.r.o.g
00000010: 00 72 00 61 00 6d 00 .r.a.m.

byte size of first value?

4.3. Example: the catalog (data type) definition

The data below is an example of the catalog (data type) definition. Also see section:
10.2.1 Catalog (MSysObjects and MSysObjectsShadow)

offset size value Description

Fixed size data type definitions

0 4 The Father Data Page (FDP) object
identifier

4 2 Catalog type
0x0001 => table
0x0002 => column
0x0003 => index
0x0004 => long value
0x0005 => callback

6 4 The identifier

If data definition type is 0x0002 (column)

10 4 Column type
See section: 6.1 Column type

Other data definition types

10 4 The Father Data Page (FDP) number

If data definition type is 0x0001 (table)

14 4 Space usage
The number of pages used by the table

18 4 Flags (or group of bits)

22 4 The (initial) number of pages

If data definition type is 0x0002 (column)

14 4 Space usage
The number of bytes used by the column

18 4 Flags (or group of bits)
See section: 6.2 Column flags (group of
bits)

22 4 Codepage

If data definition type is 0x0003 (index)

14 4 Space usage
The number of pages used by the index

page 20

offset size value Description

18 4 Flags (or group of bits)

22 4 The locale identifier (LCID)
See section: 9.1 The LCID structure
The LCID is used for normalizing the
string when JET_bitIndexUnicode is not
specified in the index flags (group of
bits).

If data definition type is 0x0004 (long value)

14 4 Space usage
The number of pages used by the long
value

18 4 Flags (or group of bits)
0x00000000 => single extent
0x00000001 => multiple extent

22 4 The (initial) number of pages

If data definition type is 0x0005 (callback)

TODO

All data definition types

26 1 The root flag

27 2 The record offset
The offset of the data type within the
record

29 4 The LC map flags

33 2 Key most

35 ... Unknown trailing data
used to handle tagged data type
definitions?

... ... The variable data types size array

... ... The variable data types data array
Contains data for a variable data type

If more data is present

... ... The tagged data types offset array

If present in the tagged types offset array

The tagged data types data array
Contains data for a tagged data type

For data definition type is 0x0001 (table) the variable data type 'TemplateTable' is used to store
the name of the table used as its template. See section: 10.3 Template tables.

For data definition type is 0x0005 (callback) the variable data type 'TemplateTable' is used to
store the name of the DLL and function to call.

page 21

4.4. Long Values

The actual long values are stored in a separate page tree. The corresponding page key of the long
value is the long value identifier in reverse byte order. E.g. a long value identifier of: 0xa7000000
relates to a page key of 0x000000a7. In version 0x620 and revision 0x0c the page key contains the
leading 0 values in revision 0x09 these leading 0 values are not present.

The long value page key refers to a page value in the long value page tree corresponding to the
table page tree as defined in the catalog.

This page value contains the long value header. The long value header is 8 bytes of size and
consists of:
offset size value Description

0 4 Unknown
Value is 1
Value is 0 in some defunct long values

4 4 Unknown
Last segment offset

Hypothesis: the total long value size,
holds for a lot of single segment long
values but not for some multi segment
long values
Largest segment size?l

The corresponding segments can be found by combining the long value page key with a 4 byte
segment offset, starting with offset 0. E.g. the first segment for the long value identifier
0xa7000000 is the page key 0x000000a7 followed by the segment offset 0x00000fae (4014),
therefore 0x000000a7000000fae.

One long value page tree per table?

Inverse key stored in data type definition

The offset (+ data size) of the last segment can exceed the total long value size?

4.5. Mutli values

The multi value is variable of size and consists of:
offset size value Description

0 ... Value offset array
Consists of 16-bit offset values
The offset is relative to the start of the
multi value
flag bits:
0x8000 (?)

... ... Value data array

page 22

column definition identifier : 625
column definition name : ML827a
column definition type : Integer 32-bit
signed (JET_coltypLong)
(625) tagged data type identifier : 625
(625) tagged data type offset : 0x43cb (971)
(625) tagged data type size : 31
(625) tag byte : 0x08
(625) tagged data type:
00000000: 0a 00 0e 00 12 00 16 00 1a 00 17 80 00 00 37 80 7.
00000010: 00 00 16 3a 00 00 19 80 00 00 18 80 00 00 ...:....

00000000: 06 00 0a 00 0e 00 80 80 00 00 90 80 00 00 a0 80
00000010: 00 00 ..

2 byte offset(s)
fixed size value(s)

column definition identifier : 318
column definition name : MN667f
column definition type : Large binary data
(JET_coltypLongBinary)
(318) tagged data type identifier : 318
(318) tagged data type offset : 0x4173 (371)
(318) tagged data type size : 45
(318) tag byte : 0x09
(318) tagged data type:
00000000: 04 00 18 00 44 0d 4a ae 39 18 8f 40 a0 0d be 80 D.J. 9..@....
00000010: cb bf cd ad 00 00 00 00 5a 1f 4f 36 67 80 6b 4f Z.O6g.kO
00000020: a1 81 89 f2 bb 7e 6b 39 00 00 00 00 ~k9

2 byte offset(s)
variable size value(s)

column definition identifier : 296
column definition name : MS8053
column definition type : Large text (extended ASCII or Unicode
string) (JET_coltypLongText)
(296) tagged data type identifier : 296
(296) tagged data type offset : 0x429b (667)
(296) tagged data type size : 3019
(296) tagged data type flags : 0x09
 Is variable size
 Is multi value

(296) tagged data type:
00000000: 42 00 9e 00 f8 00 58 01 bc 01 1c 02 7a 02 d8 02 B.....X.z...
00000010: 40 03 a8 03 0c 04 72 04 d4 04 2e 05 98 05 f6 05 @.....r.
00000020: 64 06 d6 06 30 07 8a 07 ee 07 52 08 c6 08 26 09 d...0... ..R...&.
00000030: 88 09 e8 09 44 0a a2 0a 02 0b 64 0b be 8b c2 8b D... ..d.....
00000040: c6 8b 75 00 72 00 6e 00 3a 00 73 00 63 00 68 00 ..u.r.n. :.s.c.h.

MSB contains some flag (defunct?)

0x8000 flag

00000000: 42 00 9e 00 f8 00 58 01 bc 01 1c 02 7a 02 d8 02 B.....X.z...
00000010: 40 03 a8 03 0c 04 72 04 d4 04 2e 05 98 05 f6 05 @.....r.
00000020: 64 06 d6 06 30 07 8a 07 ee 07 52 08 c6 08 26 09 d...0... ..R...&.

page 23

00000030: 88 09 e8 09 44 0a a2 0a 02 0b 64 0b be 8b c2 8b D... ..d.....
00000040: c6 8b ..

00000040: 75 00 72 00 6e 00 3a 00 73 00 63 00 68 00 u.r.n. :.s.c.h.
00000050: 65 00 6d 00 61 00 73 00 2d 00 6d 00 69 00 63 00 e.m.a.s. -.m.i.c.
00000060: 72 00 6f 00 73 00 6f 00 66 00 74 00 2d 00 63 00 r.o.s.o. f.t.-.c.
00000070: 6f 00 6d 00 3a 00 6f 00 66 00 66 00 69 00 63 00 o.m.:.o. f.f.i.c.
00000080: 65 00 3a 00 6f 00 66 00 66 00 69 00 63 00 65 00 e.:.o.f. f.i.c.e.
00000090: 23 00 41 00 75 00 74 00 68 00 6f 00 72 00 #.A.u.t. h.o.r.

00000090: 75 00 u.
000000a0: 72 00 6e 00 3a 00 73 00 63 00 68 00 65 00 6d 00 r.n.:.s. c.h.e.m.

00000bb0: 65 00 23 00 54 00 69 00 74 00 6c 00 65 00 43 00 e.#.T.i. t.l.e.C.
00000bc0: 00 00 44 00 00 00 45 00 00 00 ..D...E. ..

5. Database

5.1. Database signature

The database signature (JET_SIGNATURE) is 28 bytes of size and consists of:
offset size value description

0 4 A randomly assigned number

4 8 Creation date and time
Consists of a log time
See section: 8.3 log time

12 16 The NetBIOS computer name
ASCII string terminated by a NUL-
character
Unused bytes are filled with 0

5.1.1. Database time

The database time (DBTIME) is 8 bytes of size and consists of:
offset size value description

0 2 Hours
Value should be [0 - 23]

2 2 Minutes
Value should be [0 - 59]

4 2 Seconds
Value should be [0 – 59]

6 2 0 Padding

6. Columns

6.1. Column type

The column type (JET_COLTYP) consist of the following values:

page 24

Value Identifier Description

0 JET_coltypNil Invalid
Invalid column type.

1 JET_coltypBit Boolean
Boolean column type that can be true, or false but
cannot be NULL. This type of column is one byte
of size and is a fixed size.

2 JET_coltypUnsignedByte Integer 8-bit unsigned

3 JET_coltypShort Integer 16-bit signed

4 JET_coltypLong Integer 32-bit signed

5 JET_coltypCurrency Currency (64-bit)
An 8-byte signed integer that can consist of
values between - 9223372036854775808 and
9223372036854775807.

6 JET_coltypIEEESingle Floating point single precision (32-bit)

7 JET_coltypIEEEDouble Floating point double precision (64-bit)

8 JET_coltypDateTime Date and time (64-bit)
The date and time is stored as a little-endian
filetime
A double-precision (8-byte) floating point number
that represents a date in fractional days since the
year 1900. This column type is identical to the
variant date type (VT_DATE).

9 JET_coltypBinary Binary data
A fixed or variable size, raw binary column that
can be up to 255 bytes in size.

10 JET_coltypText Text (Extended ASCII or Unicode)
A fixed or variable size text column that can be up
to 255 ASCII characters in size or 127 Unicode
characters in size.
The text need not be null terminated, but
embedded null characters can be stored.

11 JET_coltypLongBinary Large binary data
A fixed or variable size, raw binary column that
can be up to 2147483647 bytes of size.

12 JET_coltypLongText Large text (Extended ASCII or Unicode)
A fixed or variable size, text column that can be
up to 2147483647 ASCII characters in size or
1073741823 Unicode characters in size.

Values introduced in Windows XP

13 JET_coltypSLV Super Large Value
This column type is obsolete.
A record in the .edb file contains a column (of data
type JET_coltypSLV) that references a list of
pages in the streaming file that contains the raw

page 25

Value Identifier Description

data. Space usage (maximum of four kilobytes of
page numbers) and checksum data for the data in
the streaming file is stored in the .edb file.
SLV = Super Long Value

Values introduced in Windows Vista

14 JET_coltypUnsignedLong Integer 32-bit unsigned

15 JET_coltypLongLong Integer 64-bit signed

16 JET_coltypGUID GUID (128-bit)

17 JET_coltypUnsignedShort Integer 16-bit unsigned

ASCII strings are always treated as case insensitive for sorting and searching purposes. Further,
only the characters preceding the first null character (if any) are considered for sorting and
searching.
Unicode strings use the Win32 API LCMapString to create sort keys that are subsequently used
for sorting and searching that data. By default, Unicode strings are considered to be in the U.S.
English locale and are sorted and searched using the following normalization flags:
NORM_IGNORECASE, NORM_IGNOREKANATYPE, and NORM_IGNOREWIDTH. In
Windows 2000, it is possible to customize these flags per index to also include
NORM_IGNORENONSPACE. In Windows XP and later releases, it is possible to request any
combination of the following normalization flags per index: LCMAP_SORTKEY,
LCMAP_BYTEREV, NORM_IGNORECASE, NORM_IGNORENONSPACE,
NORM_IGNORESYMBOLS, NORM_IGNOREKANATYPE, NORM_IGNOREWIDTH, and
SORT_STRINGSORT.
In all releases, it is possible to customize the locale per index. Any locale may be used as long as
the appropriate language pack has been installed on the machine. Finally, any null characters
encountered in a Unicode string are completely ignored.

6.2. Column flags (group of bits)

The column flags consist of the following values:

Value Identifier Description

0x00000001 JET_bitColumnFixed Is fixed size
The column will always use the same size (within
the row) regardless of how much data is stored in
the column.

0x00000002 JET_bitColumnTagged Is tagged
The column is tagged. A tagged columns does not
take up any space in the database if it does not
contain data.

0x00000004 JET_bitColumnNotNULL Not empty
The column is not allow to be set to an empty
value (NULL).

0x00000008 JET_bitColumnVersion Is version column
The column is a version column that specifies the
version of the row.

page 26

Value Identifier Description

0x00000010 JET_bitColumnAutoincrement The column will automatically be incremented.
The number is an increasing number, and is
guaranteed to be unique within a table. The
numbers, however, might not be continuous. For
example, if five rows are inserted into a table, the
"autoincrement" column could contain the values {
1, 2, 6, 7, 8 }. This bit can only be used on
columns of type JET_coltypLong or
JET_coltypCurrency.

0x00000020 JET_bitColumnUpdatable This bit is valid only on calls to
JetGetColumnInfo.

0x00000040 JET_bitColumnTTKey This bit is valid only on calls to JetOpenTable.

0x00000080 JET_bitColumnTTDescending This bit is valid only on calls to
JetOpenTempTable.

0x00000400 JET_bitColumnMultiValued The column can be multi-valued. A multi-valued
column can have zero, one, or more values
associated with it. The various values in a multi-
valued column are identified by a number called
the itagSequence member, which belongs to
various structures, including: JET_RETINFO,
JET_SETINFO, JET_SETCOLUMN,
JET_RETRIEVECOLUMN, and
JET_ENUMCOLUMNVALUE. Multi-valued
columns must be tagged columns; that is, they
cannot be fixed-length or variable-length columns.

0x00000800 JET_bitColumnEscrowUpdate Specifies that a column is an escrow update
column. An escrow update column can be updated
concurrently by different sessions with
JetEscrowUpdate and will maintain transactional
consistency. An escrow update column must also
meet the following conditions:

• An escrow update column can be created
only when the table is empty.

• An escrow update column must be of type
JET_coltypLong.

• An escrow update column must have a
default value (that is cbDefault must be
positive).

• JET_bitColumnEscrowUpdate cannot be
used in conjunction with
JET_bitColumnTagged,
JET_bitColumnVersion, or
JET_bitColumnAutoincrement.

0x00001000 JET_bitColumnUnversioned The column will be created in an without version
information. This means that other transactions
that attempt to add a column with the same name

page 27

Value Identifier Description

will fail. This bit is only useful with
JetAddColumn. It cannot be used within a
transaction.

Values introduced in Windows 2003

0x00002000 JET_bitColumnDeleteOnZero The column is an escrow update column, and
when it reaches zero, the record will be deleted. A
common use for a column that can be finalized is
to use it as a reference count field, and when the
field reaches zero the record gets deleted.
JET_bitColumnDeleteOnZero is related to
JET_bitColumnFinalize. A Delete-on-zero column
must be an escrow update column.
JET_bitColumnDeleteOnZero cannot be used with
JET_bitColumnFinalize.
JET_bitColumnDeleteOnZero cannot be used with
user defined default columns.

Values introduced in Windows XP

0x00002000 JET_bitColumnMaybeNull Reserved for future use.

0x00004000 JET_bitColumnFinalize Use JET_bitColumnDeleteOnZero instead of
JET_bitColumnFinalize. JET_bitColumnFinalize
that a column can be finalized. When a column
that can be finalized has an escrow update column
that reaches zero, the row will be deleted. Future
versions might invoke a callback function instead
(For more information, see JET_CALLBACK). A
column that can be finalized must be an escrow
update column. JET_bitColumnFinalize cannot be
used with JET_bitColumnUserDefinedDefault.

0x00008000 JET_bitColumnUserDefinedDe
fault

The default value for a column will be provided by
a callback function. See JET_CALLBACK. A
column that has a user-defined default must be a
tagged column. Specifying
JET_bitColumnUserDefinedDefault means that
pvDefault must point to a
JET_USERDEFINEDDEFAULT structure, and
cbDefault must be set to
sizeof(JET_USERDEFINEDDEFAULT).
JET_bitColumnUserDefinedDefault cannot be
used in conjunction with JET_bitColumnFixed,
JET_bitColumnNotNULL,
JET_bitColumnVersion,
JET_bitColumnAutoincrement,
JET_bitColumnUpdatable,
JET_bitColumnEscrowUpdate,
JET_bitColumnFinalize,
JET_bitColumnDeleteOnZero, or
JET_bitColumnMaybeNull.

page 28

6.3. Compression

As of Windows 7 the column types JET_coltypLongBinary and JET_coltypLongText can be
compressed.

TODO

What about columns of 1024 bytes?

6.3.1. 7-bit ASCII compression

Columns less than 1 KiB (1024 bytes) in size with data that consists of only 7-bit ASCII
characters can be compressed by storing the 7-bit values as a continuous stream.

To decompress:
1. TODO: what does the leading byte represent?
2. start reading at offset 1
3. while not at end of stream

1. read a 7-bit value from the stream

6.3.2. 7-bit Unicode compression

[TODO]

6.3.3. XPRESS compression

Columns greater than 1 KiB (1024 bytes) in size a compression method referred to as Microsoft
XPRESS is used. This compression method is a combination of the LZ77 and DIRECT2
algorithms. The compression method is similar to the LZNT1, which is used in NTFS
compression.

7. Backup

7.1. Backup information

The backup information (JET_BKINFO) is 24 bytes of size and consists of:
offset size value description

0 8 The backup position
Consists of a log position
See section: 8.2 Log position
Contains an identifier of the backup

8 8 The backup creation date and time
Consists of a backup log time
See section: 8.3 log time

16 4 Generation lower number

page 29

offset size value description

The lower log generation number
associated with the backup.

20 4 Generation upper number
The upper log generation number
associated with the backup.

8. Transaction log

8.1. Log information

The log position (JET_LOGINFO) is 16 bytes of size and consists of:
offset size value description

0 4 16 Size of the structure

4 4 Generation lower number
The lower log generation number
associated with the transaction.

8 4 Generation upper number
The upper log generation number
associated with the transaction.

12 4 Log filename prefix
The prefix used to name the transaction
log files.

Transaction log files are named according to the instance base name and the generation number of
the log file. The name is of the format BBBXXXXX.LOG. BBB corresponds to the base name for
the log file and is always three characters in length. XXXXX corresponds to the generation
number of the log file in zero padded hexadecimal and is always five characters in length. LOG is
the file extension that is always given to transaction log files by the engine.

8.2. Log position

The log position (JET_LGPOS) is 8 bytes of size and consists of:
offset size value description

0 2 block

2 2 sector

4 4 generation

8.3. (Backup) log time

The backup log time and log time (JET_BKLOGTIME and JET_LOGTIME) is 8 bytes of size and
consist of:
offset size value description

0 1 Seconds

page 30

offset size value description

Value should be [0 - 60]

1 1 Minutes
Value should be [0 - 60]

2 1 Hours
Value should be [0 - 24]

3 1 Days
Value should be [0 - 31]

4 1 Months
Value should be [0 - 12]

5 1 Years
The year 0 represents 1900.

6 1 0 Filler byte

7 1 0 Filler byte

In a backup log time the LSB of the second filler byte can be overloaded to contains the backup
type bit. The backup type bit consists of one of the following values:
Value Identifier Description

0 streaming backup

1 snapshot backup

The backup log time was introduced in Windows Vista.

9. Windows data types

9.1. The LCID structure

Language Code Identifiers (LCID) structure to define codepages. This structure consists of:
offset size value description

0 (LSB) 16 bits Language identifier

2 4 bits Sort order

2.4 12 bits Reserved

9.1.1. Sort orders

Value Identifier Description

0x00 SORT_CHINESE_BIG5 Chinese BIG5 order

0x00 SORT_CHINESE_PRCP PRC Chinese phonetic order

0x00 SORT_DEFAULT Default sort order

0x00 SORT_GEORGIAN_TRAD
ITIONAL

Georgian traditional order

page 31

Value Identifier Description

0x00 SORT_HUNGARIAN_DEF
AULT

Hungarian default order

0x00 SORT_JAPANESE_XJIS Japanese XJIS order

0x00 SORT_KOREAN_KSC Korean KSC order

0x01 SORT_CHINESE_UNICO
DE

Chinese Unicode order

0x01 SORT_GEORGIAN_MOD
ERN

Georgian modern order

0x01 SORT_GERMAN_PHONE
_BOOK

German phone book order

0x01 SORT_HUNGARIAN_TEC
HNICAL

Hungarian technical order

0x01 SORT_JAPANESE_UNIC
ODE

Japanese Unicode order

0x01 SORT_KOREAN_UNICO
DE

Korean Unicode order

0x02 SORT_CHINESE_PRC PRC Chinese stroke count order

0x03 SORT_CHINESE_BOPOM
OFO

Traditional Chinese Bopomofo order

0x04 SORT_CHINESE_RADIC
ALSTROKE

Chinese radical/stroke order

0x04 SORT_JAPANESE_RADI
CALSTROKE

Japanese radical/stroke sort order

9.1.2. Language identifiers

The IETF language tags are defined by Best Current Practice (BCP) 47, which is currently
Request for Comments (RFC) 4646 and 4647.

A database of the language identifiers is maintained by IANA:
http://www.iana.org/assignments/language-subtag-registry

Value Language identifier Language

0x0001 ar Arabic

0x0002 bg Bulgarian

0x0003 ca Catalan

0x0004 zh-Hans Chinese, Han (Simplified variant)

0x0005 cs Czech

0x0006 da Danish

0x0007 de German

0x0008 el Modern Greek (1453-)

page 32

Value Language identifier Language

0x0009 en English

0x000a es Spanish

0x000b fi Finnish

0x000c fr French

0x000d he Hebrew

0x000e hu Hungarian

0x000f is Icelandic

0x0010 it Italian

0x0011 ja Japanese

0x0012 ko Korean

0x0013 nl Dutch

0x0014 no Norwegian

0x0015 pl Polish

0x0016 pt Portuguese

0x0017 rm Romansh

0x0018 ro Romanian

0x0019 ru Russian

0x001a hr Croatian

0x001b sk Slovak

0x001c sq Albanian

0x001d sv Swedish

0x001e th Thai

0x001f tr Turkish

0x0020 ur Urdu

0x0021 id Indonesian

0x0022 uk Ukrainian

0x0023 be Belarusian

0x0024 sl Slovenian

0x0025 et Estonian

0x0026 lv Latvian

0x0027 lt Lithuanian

0x0028 tg Tajik

0x0029 fa Persian

0x002a vi Vietnamese

0x002b hy Armenian

page 33

Value Language identifier Language

0x002c az Azerbaijani

0x002d eu Basque

0x002e hsb Upper Sorbian

0x002f mk Macedonian

0x0032 tn Tswana

0x0034 xh Xhosa

0x0035 zu Zulu

0x0036 af Afrikaans

0x0037 ka Georgian

0x0038 fo Faroese

0x0039 hi Hindi

0x003a mt Maltese

0x003b se Northern Sami

0x003c ga Irish

0x003e ms Malay (macrolanguage)

0x003f kk Kazakh

0x0040 ky Kirghiz

0x0041 sw Swahili (macrolanguage)

0x0042 tk Turkmen

0x0043 uz Uzbek

0x0044 tt Tatar

0x0045 bn Bengali

0x0046 pa Panjabi

0x0047 gu Gujarati

0x0048 or Oriya

0x0049 ta Tamil

0x004a te Telugu

0x004b kn Kannada

0x004c ml Malayalam

0x004d as Assamese

0x004e mr Marathi

0x004f sa Sanskrit

0x0050 mn Mongolian

0x0051 bo Tibetan

0x0052 cy Welsh

page 34

Value Language identifier Language

0x0053 km Central Khmer

0x0054 lo Lao

0x0056 gl Galician

0x0057 kok Konkani (macrolanguage)

0x005a syr Syriac

0x005b si Sinhala

0x005d iu Inuktitut

0x005e am Amharic

0x005f tzm Central Atlas Tamazight

0x0061 ne Nepali

0x0062 fy Western Frisian

0x0063 ps Pushto

0x0064 fil Filipino

0x0065 dv Dhivehi

0x0068 ha Hausa

0x006a yo Yoruba

0x006b quz Cusco Quechua

0x006c nso Pedi

0x006d ba Bashkir

0x006e lb Luxembourgish

0x006f kl Kalaallisut

0x0070 ig Igbo

0x0078 ii Sichuan Yi

0x007a arn Mapudungun

0x007c moh Mohawk

0x007e br Breton

0x0080 ug Uighur

0x0081 mi Maori

0x0082 oc Occitan (post 1500)

0x0083 co Corsican

0x0084 gsw Swiss German

0x0085 sah Yakut

0x0086 qut

0x0087 rw Kinyarwanda

0x0088 wo Wolof

page 35

Value Language identifier Language

0x008c prs Dari

0x0091 gd Scottish Gaelic

0x0401 ar-SA Arabic, Saudi Arabia

0x0402 bg-BG Bulgarian, Bulgaria

0x0403 ca-ES Catalan, Spain

0x0404 zh-TW Chinese, Taiwan, Province of China

0x0405 cs-CZ Czech, Czech Republic

0x0406 da-DK Danish, Denmark

0x0407 de-DE German, Germany

0x0408 el-GR Modern Greek (1453-), Greece

0x0409 en-US English, United States

0x040a es-ES_tradnl Spanish

0x040b fi-FI Finnish, Finland

0x040c fr-FR French, France

0x040d he-IL Hebrew, Israel

0x040e hu-HU Hungarian, Hungary

0x040f is-IS Icelandic, Iceland

0x0410 it-IT Italian, Italy

0x0411 ja-JP Japanese, Japan

0x0412 ko-KR Korean, Republic of Korea

0x0413 nl-NL Dutch, Netherlands

0x0414 nb-NO Norwegian Bokmål, Norway

0x0415 pl-PL Polish, Poland

0x0416 pt-BR Portuguese, Brazil

0x0417 rm-CH Romansh, Switzerland

0x0418 ro-RO Romanian, Romania

0x0419 ru-RU Russian, Russian Federation

0x041a hr-HR Croatian, Croatia

0x041b sk-SK Slovak, Slovakia

0x041c sq-AL Albanian, Albania

0x041d sv-SE Swedish, Sweden

0x041e th-TH Thai, Thailand

0x041f tr-TR Turkish, Turkey

0x0420 ur-PK Urdu, Pakistan

0x0421 id-ID Indonesian, Indonesia

page 36

Value Language identifier Language

0x0422 uk-UA Ukrainian, Ukraine

0x0423 be-BY Belarusian, Belarus

0x0424 sl-SI Slovenian, Slovenia

0x0425 et-EE Estonian, Estonia

0x0426 lv-LV Latvian, Latvia

0x0427 lt-LT Lithuanian, Lithuania

0x0428 tg-Cyrl-TJ Tajik, Cyrillic, Tajikistan

0x0429 fa-IR Persian, Islamic Republic of Iran

0x042a vi-VN Vietnamese, Viet Nam

0x042b hy-AM Armenian, Armenia

0x042c az-Latn-AZ Azerbaijani, Latin, Azerbaijan

0x042d eu-ES Basque, Spain

0x042e wen-DE Sorbian languages, Germany

0x042f mk-MK Macedonian, The Former Yugoslav Republic of
Macedonia

0x0430 st-ZA Southern Sotho, South Africa

0x0431 ts-ZA Tsonga, South Africa

0x0432 tn-ZA Tswana, South Africa

0x0433 ven-ZA South Africa

0x0434 xh-ZA Xhosa, South Africa

0x0435 zu-ZA Zulu, South Africa

0x0436 af-ZA Afrikaans, South Africa

0x0437 ka-GE Georgian, Georgia

0x0438 fo-FO Faroese, Faroe Islands

0x0439 hi-IN Hindi, India

0x043a mt-MT Maltese, Malta

0x043b se-NO Northern Sami, Norway

0x043e ms-MY Malay (macrolanguage), Malaysia

0x043f kk-KZ Kazakh, Kazakhstan

0x0440 ky-KG Kirghiz, Kyrgyzstan

0x0441 sw-KE Swahili (macrolanguage), Kenya

0x0442 tk-TM Turkmen, Turkmenistan

0x0443 uz-Latn-UZ Uzbek, Latin, Uzbekistan

0x0444 tt-RU Tatar, Russian Federation

0x0445 bn-IN Bengali, India

0x0446 pa-IN Panjabi, India

page 37

Value Language identifier Language

0x0447 gu-IN Gujarati, India

0x0448 or-IN Oriya, India

0x0449 ta-IN Tamil, India

0x044a te-IN Telugu, India

0x044b kn-IN Kannada, India

0x044c ml-IN Malayalam, India

0x044d as-IN Assamese, India

0x044e mr-IN Marathi, India

0x044f sa-IN Sanskrit, India

0x0450 mn-MN Mongolian, Mongolia

0x0451 bo-CN Tibetan, China

0x0452 cy-GB Welsh, United Kingdom

0x0453 km-KH Central Khmer, Cambodia

0x0454 lo-LA Lao, Lao People's Democratic Republic

0x0455 my-MM Burmese, Myanmar

0x0456 gl-ES Galician, Spain

0x0457 kok-IN Konkani (macrolanguage), India

0x0458 mni Manipuri

0x0459 sd-IN Sindhi, India

0x045a syr-SY Syriac, Syrian Arab Republic

0x045b si-LK Sinhala, Sri Lanka

0x045c chr-US Cherokee, United States

0x045d iu-Cans-CA Inuktitut, Unified Canadian Aboriginal Syllabics,
Canada

0x045e am-ET Amharic, Ethiopia

0x045f tmz Tamanaku

0x0461 ne-NP Nepali, Nepal

0x0462 fy-NL Western Frisian, Netherlands

0x0463 ps-AF Pushto, Afghanistan

0x0464 fil-PH Filipino, Philippines

0x0465 dv-MV Dhivehi, Maldives

0x0466 bin-NG Bini, Nigeria

0x0467 fuv-NG Nigerian Fulfulde, Nigeria

0x0468 ha-Latn-NG Hausa, Latin, Nigeria

0x0469 ibb-NG Ibibio, Nigeria

0x046a yo-NG Yoruba, Nigeria

page 38

Value Language identifier Language

0x046b quz-BO Cusco Quechua, Bolivia

0x046c nso-ZA Pedi, South Africa

0x046d ba-RU Bashkir, Russian Federation

0x046e lb-LU Luxembourgish, Luxembourg

0x046f kl-GL Kalaallisut, Greenland

0x0470 ig-NG Igbo, Nigeria

0x0471 kr-NG Kanuri, Nigeria

0x0472 gaz-ET West Central Oromo, Ethiopia

0x0473 ti-ER Tigrinya, Eritrea

0x0474 gn-PY Guarani, Paraguay

0x0475 haw-US Hawaiian, United States

0x0477 so-SO Somali, Somalia

0x0478 ii-CN Sichuan Yi, China

0x0479 pap-AN Papiamento, Netherlands Antilles

0x047a arn-CL Mapudungun, Chile

0x047c moh-CA Mohawk, Canada

0x047e br-FR Breton, France

0x0480 ug-CN Uighur, China

0x0481 mi-NZ Maori, New Zealand

0x0482 oc-FR Occitan (post 1500), France

0x0483 co-FR Corsican, France

0x0484 gsw-FR Swiss German, France

0x0485 sah-RU Yakut, Russian Federation

0x0486 qut-GT Guatemala

0x0487 rw-RW Kinyarwanda, Rwanda

0x0488 wo-SN Wolof, Senegal

0x048c prs-AF Dari, Afghanistan

0x048d plt-MG Plateau Malagasy, Madagascar

0x0491 gd-GB Scottish Gaelic, United Kingdom

0x0801 ar-IQ Arabic, Iraq

0x0804 zh-CN Chinese, China

0x0807 de-CH German, Switzerland

0x0809 en-GB English, United Kingdom

0x080a es-MX Spanish, Mexico

0x080c fr-BE French, Belgium

page 39

Value Language identifier Language

0x0810 it-CH Italian, Switzerland

0x0813 nl-BE Dutch, Belgium

0x0814 nn-NO Norwegian Nynorsk, Norway

0x0816 pt-PT Portuguese, Portugal

0x0818 ro-MO Romanian, Macao

0x0819 ru-MO Russian, Macao

0x081a sr-Latn-CS Serbian, Latin, Serbia and Montenegro

0x081d sv-FI Swedish, Finland

0x0820 ur-IN Urdu, India

0x082c az-Cyrl-AZ Azerbaijani, Cyrillic, Azerbaijan

0x082e dsb-DE Lower Sorbian, Germany

0x083b se-SE Northern Sami, Sweden

0x083c ga-IE Irish, Ireland

0x083e ms-BN Malay (macrolanguage), Brunei Darussalam

0x0843 uz-Cyrl-UZ Uzbek, Cyrillic, Uzbekistan

0x0845 bn-BD Bengali, Bangladesh

0x0846 pa-PK Panjabi, Pakistan

0x0850 mn-Mong-CN Mongolian, Mongolian, China

0x0851 bo-BT Tibetan, Bhutan

0x0859 sd-PK Sindhi, Pakistan

0x085d iu-Latn-CA Inuktitut, Latin, Canada

0x085f tzm-Latn-DZ Central Atlas Tamazight, Latin, Algeria

0x0861 ne-IN Nepali, India

0x086b quz-EC Cusco Quechua, Ecuador

0x0873 ti-ET Tigrinya, Ethiopia

0x0c01 ar-EG Arabic, Egypt

0x0c04 zh-HK Chinese, Hong Kong

0x0c07 de-AT German, Austria

0x0c09 en-AU English, Australia

0x0c0a es-ES Spanish, Spain

0x0c0c fr-CA French, Canada

0x0c1a sr-Cyrl-CS Serbian, Cyrillic, Serbia and Montenegro

0x0c3b se-FI Northern Sami, Finland

0x0c5f tmz-MA Tamanaku, Morocco

0x0c6b quz-PE Cusco Quechua, Peru

page 40

Value Language identifier Language

0x1001 ar-LY Arabic, Libyan Arab Jamahiriya

0x1004 zh-SG Chinese, Singapore

0x1007 de-LU German, Luxembourg

0x1009 en-CA English, Canada

0x100a es-GT Spanish, Guatemala

0x100c fr-CH French, Switzerland

0x101a hr-BA Croatian, Bosnia and Herzegovina

0x103b smj-NO Lule Sami, Norway

0x1401 ar-DZ Arabic, Algeria

0x1404 zh-MO Chinese, Macao

0x1407 de-LI German, Liechtenstein

0x1409 en-NZ English, New Zealand

0x140a es-CR Spanish, Costa Rica

0x140c fr-LU French, Luxembourg

0x141a bs-Latn-BA Bosnian, Latin, Bosnia and Herzegovina

0x143b smj-SE Lule Sami, Sweden

0x1801 ar-MA Arabic, Morocco

0x1809 en-IE English, Ireland

0x180a es-PA Spanish, Panama

0x180c fr-MC French, Monaco

0x181a sr-Latn-BA Serbian, Latin, Bosnia and Herzegovina

0x183b sma-NO Southern Sami, Norway

0x1c01 ar-TN Arabic, Tunisia

0x1c09 en-ZA English, South Africa

0x1c0a es-DO Spanish, Dominican Republic

0x1c0c fr-West French

0x1c1a sr-Cyrl-BA Serbian, Cyrillic, Bosnia and Herzegovina

0x1c3b sma-SE Southern Sami, Sweden

0x2001 ar-OM Arabic, Oman

0x2009 en-JM English, Jamaica

0x200a es-VE Spanish, Venezuela

0x200c fr-RE French, Réunion

0x201a bs-Cyrl-BA Bosnian, Cyrillic, Bosnia and Herzegovina

0x203b sms-FI Skolt Sami, Finland

0x2401 ar-YE Arabic, Yemen

page 41

Value Language identifier Language

0x2409 en-CB English

0x240a es-CO Spanish, Colombia

0x240c fr-CG French, Congo

0x241a sr-Latn-RS Serbian, Latin, Serbia

0x243b smn-FI Inari Sami, Finland

0x2801 ar-SY Arabic, Syrian Arab Republic

0x2809 en-BZ English, Belize

0x280a es-PE Spanish, Peru

0x280c fr-SN French, Senegal

0x281a sr-Cyrl-RS Serbian, Cyrillic, Serbia

0x2c01 ar-JO Arabic, Jordan

0x2c09 en-TT English, Trinidad and Tobago

0x2c0a es-AR Spanish, Argentina

0x2c0c fr-CM French, Cameroon

0x2c1a sr-Latn-ME Serbian, Latin, Montenegro

0x3001 ar-LB Arabic, Lebanon

0x3009 en-ZW English, Zimbabwe

0x300a es-EC Spanish, Ecuador

0x300c fr-CI French, Côte d'Ivoire

0x301a sr-Cyrl-ME Serbian, Cyrillic, Montenegro

0x3401 ar-KW Arabic, Kuwait

0x3409 en-PH English, Philippines

0x340a es-CL Spanish, Chile

0x340c fr-ML French, Mali

0x3801 ar-AE Arabic, United Arab Emirates

0x3809 en-ID English, Indonesia

0x380a es-UY Spanish, Uruguay

0x380c fr-MA French, Morocco

0x3c01 ar-BH Arabic, Bahrain

0x3c09 en-HK English, Hong Kong

0x3c0a es-PY Spanish, Paraguay

0x3c0c fr-HT French, Haiti

0x4001 ar-QA Arabic, Qatar

0x4009 en-IN English, India

0x400a es-BO Spanish, Bolivia

page 42

Value Language identifier Language

0x4409 en-MY English, Malaysia

0x440a es-SV Spanish, El Salvador

0x4809 en-SG English, Singapore

0x480a es-HN Spanish, Honduras

0x4c0a es-NI Spanish, Nicaragua

0x500a es-PR Spanish, Puerto Rico

0x540a es-US Spanish, United States

0x641a bs-Cyrl Bosnian, Cyrillic

0x681a bs-Latn Bosnian, Latin

0x6c1a sr-Cyrl Serbian, Cyrillic

0x701a sr-Latn Serbian, Latin

0x703b smn Inari Sami

0x742c az-Cyrl Azerbaijani, Cyrillic

0x743b sms Skolt Sami

0x7804 zh Chinese

0x7814 nn Norwegian Nynorsk

0x781a bs Bosnian

0x782c az-Latn Azerbaijani, Latin

0x783b sma Southern Sami

0x7843 uz-Cyrl Uzbek, Cyrillic

0x7850 mn-Cyrl Mongolian, Cyrillic

0x785d iu-Cans Inuktitut, Unified Canadian Aboriginal Syllabics

0x7c04 zh-Hant Chinese, Han (Traditional variant)

0x7c14 nb Norwegian Bokmål

0x7c1a sr Serbian

0x7c28 tg-Cyrl Tajik, Cyrillic

0x7c2e dsb Lower Sorbian

0x7c3b smj Lule Sami

0x7c43 uz-Latn Uzbek, Latin

0x7c50 mn-Mong Mongolian, Mongolian

0x7c5d iu-Latn Inuktitut, Latin

0x7c5f tzm-Latn Central Atlas Tamazight, Latin

0x7c68 ha-Latn Hausa, Latin

page 43

10. Tables

10.1. Table flags (group of bits)

The table group of bits consist of the following values:

Value Identifier Description

0x00000001 JET_bitTableCreateFixedDDL Setting JET_bitTableCreateFixedDDL prevents
DDL operations on the table (such as adding or
removing columns).

0x00000002 JET_bitTableCreateTemplateT
able

Setting JET_bitTableCreateTemplateTable causes
the table to be a template table. New tables can
then specify the name of this table as their
template table. Setting
JET_bitTableCreateTemplateTable implies
JET_bitTableCreateFixedDDL.

Values introduced in Windows XP

0x00000004 JET_bitTableCreateNoFixedVa
rColumnsInDerivedTables

Deprecated. Do not use.

10.2. metadata tables

10.2.1. Catalog (MSysObjects and MSysObjectsShadow)

The “MSysObjects” table contains the definitions of all the tables, indexes and long values that are
stored within the database. It is also referred to a the catalog (metadata table). A backup (or copy)
of the catalog is maintained in the “MSysObjectsShadow” table.

The page values (in the leaf pages) that make up the catalog contain the following information for
every table in the database:

• a table definition
• one or more column definition
• one or more index definitions; there is always at least one index for a table
• zero or more long value definitions

The catalog also contains its own table definition. The catalog table definition consist of:
Column
identifier

Column name Column type Description

Fixed size data definition types

1 ObjidTable Long Object or table identifier

2 Type Short Type
See section: 10.2.1.1 Catalog types

3 Id Long Identifier

4 ColtypOrPgnoFDP Long Column type or FDP page number

5 SpaceUsage Long Space usage

6 Flags Long Flags

page 44

Column
identifier

Column name Column type Description

7 PagesOrLocale Long Number of pages or codepage

8 RootFlag Bit Root flag

9 RecordOffset Short Record offset

10 LCMapFlags Long Flags for the LCMapString function.

Introduced in Windows Vista
(version 0x620 revision 0x0c)

11 KeyMost Short

Variable size data definition types

128 Name Text Name

129 Stats Binary

130 TemplateTable Text Name of the template 'table'

131 DefaultValue Binary Default value

132 KeyFldIDs Binary For the index column identifiers

133 VarSegMac Binary

134 ConditionalColumns Binary

135 TupleLimits Binary

Introduced in Windows Vista
(version 0x620 revision 0x0c)

136 Version Binary

Tagged data definition types

256 CallbackData Large binary
data

Data used in callback

257 CallbackDependencie
s

Large binary
data

Dependencies for callback

Introduced in Windows 7
(version 0x620 revision 0x11)

258 SeparateLV Large binary
data

259 SpaceHints Large binary
data

260 SpaceDeferredLVHin
ts

Large binary
data

A codepage of 1200 can represent either UTF-8 (or even byte stream?) or UTF-16 little-endian.
The only way to tell is to try decoding the string as UTF-16 first.

page 45

10.2.1.1. Catalog types

Value Identifier Description

0x0001 Table

0x0002 Column

0x0003 Index

0x0004 Long value

0x0005 Callback

0x0006 Related to SLVAvail (part of object 1)

0x0007 Related to SLVSpaceMap (part of object 1)

10.2.1.2. KeyFldIDs

The KeyFldIDs contain the index column identifiers of the primary and secondary keys.

A index column identifier entry is 4 bytes of size and consists of:
offset size value Description

0 2 Unknown

2 2 Index column identifier
Contains the data type identifier of the
column

Id
00000000: 00 00 01 00 00 00 02 00 00 00 03 00

Id column identifier (3)

Name
00000000: 00 00 01 00 00 00 02 00 00 00 80 00

Name column identifier (128)

RootObjects
00000000: 00 00 08 00 00 00 80 00

10.2.2. MSysUnicodeFixupVer1

Column identifier Column name Column type

1 autoinc Currency

256 objidTable Long

257 objidIndex Long

258 keyPrimary Long

259 keySecondary Long

page 46

Column identifier Column name Column type

260 lcid Long

261 sortVersion Long

262 definedVersion Long

263 itag Long

264 ichOffset Long

10.2.3. MSysUnicodeFixupVer2

The “MsysUnicodeFixupVer2” table was introduced in Windows Vista (SP0)?

Column identifier Column name Column type

1 autoinc Currency

256 objidTable Long

257 objidIndex Long

258 keyPrimary Long

259 keySecondary Long

260 lcid Long

261 sortVersion Long

262 definedVersion Long

263 rgitag Long

264 ichOffset Long

10.2.4. MSysDefrag1

Column identifier Column name Column type

1 ObjidFDP Integer 32-bit signed

2 DefragType Integer 8-bit unsigned

3 Sentinel Integer 32-bit signed

4 Status Integer 16-bit signed

256 CurrentKey Large binary data

10.2.5. MSysDefrag2

Column identifier Column name Column type

1 ObjidFDP Integer 32-bit signed

2 Status Integer 16-bit signed

3 PassStartDateTime Integer 64-bit signed

4 PassElapsedSeconds Integer 64-bit signed

page 47

Column identifier Column name Column type

5 PassInvocations Integer 64-bit signed

6 PassPagesVisited Integer 64-bit signed

7 PassPagesFreed Integer 64-bit signed

8 PassPartialMerges Integer 64-bit signed

9 TotalPasses Integer 64-bit signed

10 TotalElapsedSeconds Integer 64-bit signed

11 TotalInvocations Integer 64-bit signed

12 TotalDefragDays Integer 64-bit signed

13 TotalPagesVisited Integer 64-bit signed

14 TotalPagesFreed Integer 64-bit signed

15 TotalPartialMerges Integer 64-bit signed

256 CurrentKey Large binary data

10.3. Template tables

A table definition which uses a template table definition, basically uses a copy of the template
table and appends the defined column definitions.

E.g. if the template table defines 446 columns and the definition of the last column is a tagged data
type:
Column identifier Column name Column type

669 Q65a0 Binary data

The first column definition in the table will be column number 447:
Column identifier Column name Column type

256 N67b9 Large binary data

Note that table column identifier is 256 and will also be defined as such in the tagged data type
definitions.

What about non tagged data types?

11. Indexes
The FDP value in the catalog definition of an index, refers to the FDP of an index page B+-tree
except for the first index (Id). It will point to the parent table and does not contain index page
values. It is assumed that this index is build-in.

11.1. Index flags (group of bits)

The column flags consist of the following values:

page 48

Value Identifier Description

0x00000001 JET_bitIndexUnique Duplicate index entries (keys) are disallowed. This
is enforced when JetUpdate is called, not when
JetSetColumn is called.

0x00000002 JET_bitIndexPrimary The index is a primary (clustered) index. Every
table must have exactly one primary index. If no
primary index is explicitly defined over a table,
then the database engine will create its own
primary index.

0x00000004 JET_bitIndexDisallowNull None of the columns over which the index is
created may contain a NULL value.

0x00000008 JET_bitIndexIgnoreNull Do not add an index entry for a row if all of the
columns being indexed are NULL.

0x00000010 Unknown
Set if the index contains 3 column identifiers?

0x00000020 JET_bitIndexIgnoreAnyNull Do not add an index entry for a row if any of the
columns being indexed are NULL.

0x00000040 JET_bitIndexIgnoreFirstNull Do not add an index entry for a row if the first
column being indexed is NULL.

0x00000080 JET_bitIndexLazyFlush Specifies that the index operations will be logged
lazily.
JET_bitIndexLazyFlush does not affect the
laziness of data updates. If the indexing operations
is interrupted by process termination, Soft
Recovery will still be able to able to get the
database to a consistent state, but the index may
not be present.

0x00000100 JET_bitIndexEmpty Do not attempt to build the index, because all
entries would evaluate to NULL. grbit MUST also
specify JET_bitIgnoreAnyNull when
JET_bitIndexEmpty is passed. This is a
performance enhancement. For example if a new
column is added to a table, then an index is created
over this newly added column, all of the records in
the table would be scanned even though they
would never get added to the index anyway.
Specifying JET_bitIndexEmpty skips the scanning
of the table, which could potentially take a long
time.

0x00000200 JET_bitIndexUnversioned JET_bitIndexUnversioned causes index creation to
be visible to other transactions. Normally a session
in a transaction will not be able to see an index
creation operation in another session. This flag can
be useful if another transaction is likely to create
the same index, so that the second index-create
will simply fail instead of potentially causing
many unnecessary database operations. The

page 49

Value Identifier Description

second transaction may not be able to use the
index immediately. The index creation operation
needs to complete before it is usable. The session
must not currently be in a transaction to create an
index without version information.

0x00000400 JET_bitIndexSortNullsHigh Specifying this flag causes NULL values to be
sorted after data for all columns in the index.

0x00000800 JET_bitIndexUnicode Specifying this flag affects the interpretation of
the lcid/pidxunicde union field in the structure.
Setting the bit means that the pidxunicode field
actually points to a JET_UNICODEINDEX
structure. See JET_UNICODEINDEX.
JET_bitIndexUnicode is not required to index
Unicode data. It is only needed to customize the
normalization of Unicode data.

Values introduced in Windows XP

0x00001000 JET_bitIndexTuples Specifies that the index is a tuple index. See
JET_TUPLELIMITS for a description of a tuple
index.

Values introduced in Windows 2003

0x00002000 JET_bitIndexTupleLimits Specifying this flag affects the interpretation of
the cbVarSegMac/ptuplelimits union field in the
structure. Setting this bit means that the
ptuplelimits field actually points to a
JET_TUPLELIMITS struct to allow custom tuple
index limits (implies JET_bitIndexTuples). See
JET_TUPLELIMITS.

Values introduced in Windows Vista

0x00004000 JET_bitIndexCrossProduct Specifying this flag for an index that has more
than one key column that is a multi-valued column
will result in an index entry being created for each
result of a cross product of all the values in those
key columns. Otherwise, the index would only
have one entry for each multi-value in the most
significant key column that is a multi-valued
column and each of those index entries would use
the first multi-value from any other key columns
that are multi-valued columns.

For example, if you specified this flag for an index
over column A that has the values "red" and "blue"
and over column B that has the values "1" and "2"
then the following index entries would be created:
"red", "1"; "red", "2"; "blue", "1"; "blue", "2".
Otherwise, the following index entries would be
created: "red", "1"; "blue", "1".

page 50

Value Identifier Description

0x00008000 JET_bitIndexKeyMost Specifying this flag will cause the index to use the
maximum key size specified in the cbKeyMost
field in the structure. Otherwise, the index will use
JET_cbKeyMost (255) as its maximum key size.

0x00010000 JET_bitIndexDisallowTruncati
on

Specifying this flag will cause any update to the
index that would result in a truncated key to fail
with JET_errKeyTruncated. Otherwise, keys will
be silently truncated. For more information on key
truncation, see the JetMakeKey function.

12. Notes

12.1. The database metadata table

The database metadata table contains space tree information about the database. The database
metadata table is always stored as FDP object identifier 1 with parent FDP page number 1.

page 51

Appendix A. References
[MSDN]
Title: Microsoft Developer Network
URL: http://msdn.microsoft.com/

Appendix B. GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The "Document", below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License.

page 52

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup has been
designed to thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML designed for human modification. Opaque formats include PostScript,
PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

page 53

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in
the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission

to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to it an item stating at least the

title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from any
other section titles.

page 54

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of
your Modified Version by various parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled
"Acknowledgements", and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, does not as a whole count as a
Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this License does not apply to the
other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be
placed on covers that surround only the Document within the aggregate. Otherwise they must
appear on covers around the whole aggregate.

page 55

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may include
a translation of this License provided that you also include the original English version of this
License. In case of a disagreement between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.

page 56

	1. Overview
	1.1. Test version
	1.2. File structure

	2. (Database) file header
	2.1. File type
	2.2. File format version and revision
	2.3. Database state

	3. Hierarchical page-based storage
	3.1. Page header
	3.1.1. Changes in Exchange 2003 SP1
	3.1.2. Changes in Windows 7
	3.1.3. Page flags

	3.2. Page tags
	3.2.1. Page tag - format revision 12 and earlier
	3.2.2. Page tag - format revision 17 and later
	3.2.3. Page tag flags

	3.3. Page B+-tree
	3.3.1. Root page
	3.3.1.1. Root page header

	3.3.2. Branch page
	3.3.2.1. Branch page header
	3.3.2.2. Branch page entry

	3.3.3. Leaf page values
	3.3.3.1. Leaf page header
	3.3.3.2. Leaf page entry
	3.3.3.2.1. Leaf page entry - format revision 17 and later

	3.4. Page values
	3.4.1. Space tree page values
	3.4.1.1. Space tree leaf page header
	3.4.1.2. Space tree leaf page entry

	3.4.2. Index page values
	3.4.2.1. Index leaf page entry data

	3.4.3. Long value page values
	3.4.4. Table page values

	4. Data definitions
	4.1. Data definition header
	4.2. Data type definitions
	4.2.1. Variable size data type size array entry
	4.2.2. The tagged data type definitions - format revision 2
	4.2.3. The tagged data type definitions - format revision 9 and later
	4.2.3.1. Tagged data type offset array entry
	4.2.3.2. Tagged data type flags

	4.3. Example: the catalog (data type) definition
	4.4. Long Values
	4.5. Mutli values

	5. Database
	5.1. Database signature
	5.1.1. Database time

	6. Columns
	6.1. Column type
	6.2. Column flags (group of bits)
	6.3. Compression
	6.3.1. 7-bit ASCII compression
	6.3.2. 7-bit Unicode compression
	6.3.3. XPRESS compression

	7. Backup
	7.1. Backup information

	8. Transaction log
	8.1. Log information
	8.2. Log position
	8.3. (Backup) log time

	9. Windows data types
	9.1. The LCID structure
	9.1.1. Sort orders
	9.1.2. Language identifiers

	10. Tables
	10.1. Table flags (group of bits)
	10.2. metadata tables
	10.2.1. Catalog (MSysObjects and MSysObjectsShadow)
	10.2.1.1. Catalog types
	10.2.1.2. KeyFldIDs

	10.2.2. MSysUnicodeFixupVer1
	10.2.3. MSysUnicodeFixupVer2
	10.2.4. MSysDefrag1
	10.2.5. MSysDefrag2

	10.3. Template tables

	11. Indexes
	11.1. Index flags (group of bits)

	12. Notes
	12.1. The database metadata table

